I
Big Nerd
Ranch

I0S Programming

Christian Keur and Aaron Hillegass

iOS Programming: The Big Nerd Ranch Guide

by Christian Keur and Aaron Hillegass

Copyright © 2016 Big Nerd Ranch, LLC

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC

200 Arizona Ave NE

Atlanta, GA 30307

(770) 817-6373
http://www.bignerdranch.com/
book-comments @bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, LLC.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

App Store, Apple, Cocoa, Cocoa Touch, Finder, Instruments, iCloud, iPad, iPhone, iPod, iPod touch, iTunes,
Keychain, Mac, Mac OS, Multi-Touch, Objective-C, OS X, Quartz, Retina, Safari, and Xcode are trademarks of
Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0134687442
ISBN-13 978-0134687445

Sixth edition, first printing, December 2016
Release D.6.1.1

Acknowledgments

While our names appear on the cover, many people helped make this book a reality. We would like to
take this chance to thank them.

* First and foremost we would like to thank Joe Conway for his work on the earlier editions of this
book. He authored the first three editions and contributed greatly to the fourth edition as well.
Many of the words in this book are still his, and for that, we are very grateful.

* Juan Pablo Claude wrote some of the content and contributed his expertise and opinions to make
this book even better. His work is greatly appreciated.

* A couple other people went above and beyond with their help on this book. They are Mikey Ward
and Chris Morris.

* The other instructors who teach the iOS Bootcamp fed us a never-ending stream of suggestions
and corrections. They are Ben Scheirman, Bolot Kerimbaev, Brian Hardy, Chris Morris, JJ
Manton, John Gallagher, Jonathan Blocksom, Joseph Dixon, Juan Pablo Claude, Mark Dalrymple,
Matt Bezark, Matt Mathias, Mike Zornek, Mikey Ward, Pouria Almassi, Robert Edwards, Rod
Strougo, Scott Ritchie, Step Christopher, Thomas Ward, TJ Usiyan, Tom Harrington, and Zachary
Waldowski. These instructors were often aided by their students in finding book errata, so many
thanks are due to all the students who attend the iOS Bootcamp.

» Thanks to all of the employees at Big Nerd Ranch who helped review the book, provided
suggestions, and found errata.

* Our tireless editor, Elizabeth Holaday, took our distracted mumblings and made them into
readable prose.

* Anna Bentley and Simone Payment jumped in to provide copyediting and proofing.
* Ellie Volckhausen designed the cover. (The photo is of the bottom bracket of a bicycle frame.)

* Chris Loper at IntelligentEnglish.com designed and produced the print and ebook versions of the
book.

* The amazing team at Pearson Technology Group patiently guided us through the business end of
book publishing.

The final and most important thanks goes to our students, whose questions inspired us to write this
book and whose frustrations inspired us to make it clear and comprehensible.

Table of Contents

INErOAUCTIONoiiniin i e ettt et et e e e Xiii
o (e (T |8] 11N xiii
What Has Changed in the Sixth Edition?c.oooiiiiiiiiiiiiiiii e xiii
Our Teaching PhilOSOPRYcuuiiniiiiiiii e Xiv
How t0 Use This BOOKcouuiiiiiiii e XV
How This BOOk Is Organizedocuuiiiiniiiiiiii et XV
SEYIE CROICES ..enininiiiie ittt et ettt ettt et e e e e eaeens XVii
Typographical CONVENTIONSc.uiuuiunieiiiiiiiirete ettt e et e e e et eaeneanes Xvii
Necessary Hardware and SOftwarecoooiiiiiiiiiiiiiiiiii e Xvii

1. A Simple 10S APPIHCALIONuuiniiiiinii e e e et 1
Creating an Xcode ProOJECTouuiiniiniiiii e 2
Model-View-Controllercouiiiiiiiiiiiii it 5
DeSIZNING QUIZ ..evninnitiiiii ettt et ettt et et et et e e e e et e e e 6
Interface BUilderc..oouiiiiiiii e 7
Building the INterfaceouuiiniiniiii e 8

CTeating VIEW ODJECES euuvunirninitit ettt ittt ettt ettt e et et e et et et s eie e et eaeeneenenns 9
Configuring VIEW ODJECES ..uuiuniiniineieie ittt e e e et e e eaeanas 12
Running on the SIMUIAtOroouiiiiiiii e 13
A brief introduction to Auto Layoutc.ccoviuiiiiiiiiiiiiiiiin e 14
MaKING CONMNECLIONS ..v.enetnineinein ettt e et et et et et et et et et et et et e e et eaeteanenns 17
Creating the Model Layercooouiiiiiiiii e 22
Implementing action MEthOASc.veuiiuiiniiiiiiii e 23
Loading the first QUESTIONvuuiunieniiiiiii ettt e e e 23
Building the Finished APPLICAtIONc..iuuiiniiniiiiii e e e 24
APPICAION TCOMS ..euinitiiiii ettt et e e e 25
Launch SCIEENcouiiiiiiiiii e 28

2. The SWift Lan@UAZEoeniiniiniiii it e e e e 29
TYPES TN SWITL ot e et e aaas 30
USING Standard TYPES . .uuneneiniieiti et e aaas 31

INFRITING LY PES ettt et et et e ea e 33
SPECIEYING LYPES ettt e et et et e et e et et e e aeanas 33
Literals and SUDSCTIPLING ...uvunirninniiiitiiit et e e 35
INIHHALIZETS ..evniiniii ittt 36
PIOPEILIES ...enineieie e 37
Instance Methodscooouiiiiiiiii e 37
L0515 0] 021 KPR 38
SubsCripting dICHONATIESueuininitin ittt e et e e e e e e ans 40
Loops and String INterpolationccoviuiiniiiiiiiiiiii e 40
Enumerations and the Switch Statementocooiiiiiiiiiiiiiiii e 42
Enumerations and raw ValUEsccoiiiiiiiiiiiiiiiiiiii e 43
Exploring Apple’s Swift DOCUMENtAtIONeuuiuniiniiniitiiei e e 44

3. Views and the View Hierarchycooiiiiiiii e 45
VIBW BSICS . oeniitiiiii e 46
The View HIETarchyooiiiiiiii e 46
Creating @ NewW ProOjJECto.iuiiiiii e 48

iOS Programming

Views and Framescooviiiiiiiiiiiiii e 49
Customizing the 1abelso e 57

The Auto Layout SYSTEIMueeuniitiii ittt e et e ean e 60
The alignment rectangle and layout attributescoeeeiviiiiiiiiiiiiniiinieeeen, 60
CONSLIAINLS +..eevuieeiiieeite ettt et ettt e e e et et e et e e e e et et e eea e e et e eeaieenane e 61
Adding constraints in Interface Builderooooiiiiiiiiiiiii e 63
INLHNSIC CONLENE SIZE ...evvuniiineiiii ettt ettt ettt e e et e e e 64
MISPIACEA VIEWS ...eeniie ittt et ettt e e e e e e e e e 66
Adding MOTe CONSIIAINES ...evuuituitneitne ettt et e e et et e e et e e e e e eeaneees 67
Bronze Challenge: More Auto Layout Practicecooocoiiiuiiiiiiiiiiiiiiieieieeceen 68
4. Text Input and Delegationccouuiiiiiiiiiiiiiieii et 69
TeXt EAItING . oeneeniiniie et 70
Keyboard attribULESceuueiuiiiiie et 74
Responding to text field Changesc.ooiuiiiiiiiiiiii e 74
Dismissing the Keyboardoooiiiiiiiiiiiii e 78
Implementing the Temperature CONVEISIONcc..uviiuiiiiieiiineeiiieiineeiieerieeeieeeieennnns 79
NUMDET fOIMALETS ...oevviiiiieiiie ittt ettt e e e 81
D) [421 4 (o) | KPP 82
Conforming t0 @ ProtOCOLiuuiineii ettt 82
USING @ ARIEZALE ...eunitieiieii e e ettt et 83
MOTE ON PIOLOCOLS ...euniine ittt et eae e 85
Bronze Challenge: Disallow Alphabetic Charactersceoveeuviiiiiiiiiineiineineiieineeannees 85
5. VIEW CONLIOIIETS ...evviiiiieiii ettt ettt ettt e e et e e e e e 89
The View of @ View CONtrolleroooiiuiiiiiiiiiiiiiiiiiiiin e 90
Setting the Initial View CONtrollerooouuiiiiiiiiiiiiiiiiiin e 91
UITabBarCOntrOlIETccuuuiiiniiiiiieiiie ettt e et e et e eea e 95
Tab Dar ILEIMS ..o.uuiiiiiii e 98
Loaded and APpPearing VIBWSccuuiiuiiuiiniiieii et e 100
ACCESSING SUDVIEWS ...eetiiiiiie ittt ettt et et et e et e e et et e et et e e e e eans 101
Interacting with View Controllers and Their VIEWSccoiiiiiiiiiiiiiiiiiiniiiiieiecee, 101
Silver Challenge: Dark MOdeccouiiuiiiiiiiii e 101
For the More Curious: Retina Displayc.ooiuiiiiiiiiiiiii e 102
6. ProgrammatiC VIEWScuuiiiiiiii ettt et ettt e 105
Creating a View Programmaticallycoocooiiiiiiiiiiiiiiiie e 107
Programmatic CONSIIAINESc.uiuneitiii e ettt et e et e e e e e e e e e eanaas 108
ANCROTS ittt e 109
ACHIVALING CONSLIAINESeetiitiin ittt et e e e e e e et e e e e eans 110
Layout GUIAESceunienii it 111
IMIAT@INIS ettt e ettt et et e e et e e e e 112
EXPICIt CONSIIAINES ..eviitneiteii ettt et e e e 113
Programmatic CONLIOLSiiuuiiieiiii e 114
Bronze Challenge: Another Tab ..o 116
Silver Challenge: User’s LOCAtIONc.uiiuniiuiiiiiiiiiiii e 116
Gold Challenge: Dropping Pinsc..oouuiiiniiiiiiee e 116
For the More Curious: NSAutoresizingMaskLayoutConstraintccceeueeuneenneennnn. 117
T LOCAIIZATION ..evuneiiiniii ettt ettt ettt et ettt e e e e 119
InternationaliZationcociuiiiiiiiiiii e 121
FOrmattersoiiiiiii 121

Vi

iOS Programming

Base internationaliZationc...veiuiiiiiiiiiniiiineii et e 125
Preparing for 10CaliZationccoiiiuiiiiiii i 126
LOCAlIZALION ..ueiiiiiiii ittt 133
NSLocalizedString and Strings tablescooeoiiiiiiiiiiiii e 136
Bronze Challenge: Another Localizationccccoiiiiiiiiiiiiiiiniie e, 140
For the More Curious: Bundle’s Role in Internationalizationccoeveiiiiiiineeinnn. 140
For the More Curious: Importing and Exporting as XLIFFc..ccooiiiiiiiiiiiiiiiinaenn, 141
8. Controlling ANIMALIONS ... c.uiuniteit ettt ettt et e et et e e e e e et e ea e teaeanaennaas 143
Basic ANIMAtIONSu.iiiuniiiieiii et ettt et ettt e e e eaas 144
CIOSUIES ..ttt ettt ettt et ettt ettt e e e et et e et e e et e eaaeeaaaeeens 145
ANOhET LabEluiiiiiiiiiiiii e 147
Animation COMPIELIONeiiuuiiiiiiiii ittt et eae e e eee 149
AnImating CONSLIAINESueiitniiineiii ittt ettt e e e et et e e e et e e e et eeaaeeans 149
TIMING FUNCHONS ...ttt et e e 154
Bronze Challenge: Spring ANIMAtIONSc..ceuueiteiniii it e e e aeenes 156
Silver Challenge: Layout GUIAESc.ueiuniiuiiiiiiiii et 156
9. DIEDUZZING .. eeeneiiineeiie ettt e e 157
A BUZEZY PIOJECT .t 157
Debugging BasiCsiiuuuiiiiiiiiiie i 159
Interpreting CONSOIE MESSAZES ..cvvunervuniiiiniiiiiieiie ettt ettt ea e eens 159
Fixing the first BUGoeniiii e 162
Caveman debUZZINGc.uiiuiiiiiiiii e 162

The Xcode Debugger: LLDBcouiiiiiiiiiiie e 164
Setting breakpOintso..iiuneiuei e 165
Stepping through Codeo.iiiiiii e 166

The LLDB CONSOIEuiitiiiiiiiiieiii ettt e 175

10. UlTableView and UITableViewCONtrollerccouuviiiiiiiiiniiiiiiiiiieiineiineiii e 177
Beginning the Homepwner AppliCationcouuviuuiiiiiiiiiieiieie e 177
UITable VIEWCONIIOIIETcc.uuiiiiiiiiiiiiii et 179
Subclassing UITable ViewControllerccoieiuiiiiiiiiiiiiiiiin e 180
Creating the Ttem CLaSScouiiiiiiiii ettt 181
CUuStom INIHALIZETS ..oevuniiiiiiiiie ittt e e 181
UITableVIew’s Data SOUICEveiuuiiiiniiiiiiiie ettt et e e e 183
Giving the controller access to the SOIEccuieiuiiiiiiiiiiiiiiieiie e 184
Implementing data source methodscoiiiiiiiiiiiiiiiii e 186
UITabIeVIEWCEILS ...ceviiiiieiiiieeii e et 187
Creating and retrieving UITableViewCellsc.cooeiuiiiiiiiiiiniiiniiineiecieeenen, 189
Reusing UITableVIEWCEIISviiuiiiiiiiiiiiiiiiiii e 190
CONLENE TNSELS +..ueiiiieiiin ettt et ettt ettt e e e et e e e e e eee 193
Bronze Challenge: SECtiONSviiuuiiiiiiiiieiie ettt 194
Silver Challenge: Constant ROWScc.oiiiiiiiiiiiiiiiiiiii e, 194
Gold Challenge: Customizing the Tableccoooiiiiiiiiiiiii e, 194
11. Editing UITabIEVIEWiiiiiiiiiiiiiiiii et 195
Editing MOEeuiiniiiiieii et 195
AdAING ROWS ..o e 200
Deleting ROWS ...t 202
MOVING ROWS ..ttt et et e e e e e 203
Displaying USEr ALCTESc.ueuuiiiiiiiiie e e et e e e eans 205

vii

iOS Programming

DesiZN PAttEINS ..o.uuiiiniiiiiii it 209
Bronze Challenge: Renaming the Delete Buttonc.cccooviiiiiiiiiiiiiniiiiniiiieciineen, 209
Silver Challenge: Preventing Reorderingccooouviiiiiiiiiiiiiiiiiiniiiincin e 209
Gold Challenge: Really Preventing Reorderingccccooueviiiiiiiiniiiiiiiiiiiiiiineiineeiinees 209
12. Subclassing UITableVIEWCEILc.uiiuiiiiiiiiie e 211
Creating TtemOCellcooiii e 212
Exposing the Properties of TtemCellccoiiiiiiiiiiiiie e 214
USING TEEMECEILeeiitei ettt e 215
Dynamic Cell HEightscouiiiiii e 216
DyNamIC TYPE . .neeneiieiiei et 217
Responding to USer ChaNGEesceuiiiiiiiiiiiiie e 220
Bronze Challenge: Cell COLOTSccuuiiuiiiiiieii et 220
13, StACK VIBWS ..eiiiiiiiiiiii e ettt et 221
USING ULSEACKVIEW ...ttt et et e e e 223
IMPLCIt CONSIIAINES ..evieitieite ittt e e e e e 224
Stack view diStrTBULIONccouuiiiiiiiiiiiiiii e 227
INESLEA STACK VIBWS ..uiiiieiiieiiiie ettt et e ettt ettt e e e eenes 228
StaCK VIEW SPACIILZ ...evnitniitne ittt ettt et et e e e e e 228
SEEUES .ttt ettt ettt et et e aa e 230
Hooking Up the CONLENLuiuniiiiie et eans 231
Passing Data ATOUNGcouuiiiiiiii e e et 236
Bronze Challenge: More Stack VIEWSoiuuiiiiiiiiiiiiieii e 238
14. UINavigatioNCONLIOLIETiiiuiiiiiiiii ettt eaes 239
UINavigationCONIIOLIETuiuuiinii ettt ettt e e e e 241
Navigating with UINavigationControllerooeeuiiiiiiiiiiiiieineneie e 245
Appearing and Disappearing VIBWScouiiuiiniiiniiieii et 246
Dismissing the Keyboardcoooiiiiiiiiii e 247
Event handling DasiCscuuiiuniiiiiiiii e 248
Dismissing by pressing the Return Keyccoooooiviiiiiiiiiiiiiniiin e, 249
Dismissing by tapping elSEWherecooiiiiiiiiiiiiiii e 250
UINaVIZAtIONBAL ...etuiiiiiiii ettt e e e e e e eans 252
Adding buttons to the navigation barcoeoiiiiiiiiiiiniiiii e 254
Bronze Challenge: Displaying a Number Padooooiiiiiiie, 257
Silver Challenge: A Custom UITextFieldooiiiiiiiiiiii e, 257
Gold Challenge: Pushing More View COntrollersc.ooeuieiiniiiniiiiiiiiiiiiiniineeieennee. 257
I5. CAIMBIA ettt ettt ettt et aaa e 259
Displaying Images and UIIMageVIeWccviiuiiiiiiiiiiiiiiieiieie e 260
Adding a camera BUONoiuuiiiiiii et e e 262
Taking Pictures and UllmagePickerControllercooeiiiiiiiiiiiiiiniiniinineeceea, 265
Setting the image picker’s SOUIrCETYPEceuueeuniiniiiniii i 265
Setting the image picker’s delegatec..cooviiiiiiiiiiiiiiiii e 267
Presenting the image picker modallycooooiiiiiiiiiiiiii 267
PEITISSIONS .. oeiviiiii ettt ettt ettt e e 268
SaVING the TMAZE ..evniteiie ettt 271
Creating IMageSTtOreoeuniiiii et 272
Giving View Controllers Access to the Image Storecooviiiiiiiiiiiiiiiiiiiieceean, 273
Creating and UsiNg KEYSc.uiiuiiiiiiiii e 274
Wrapping Up IMageStorec..iiuniiiiiiiiiei e 277

viii

iOS Programming

Bronze Challenge: Editing an Imageooiiiiiiiiiiiiiiiii e 278
Silver Challenge: Removing an Imagecoieiiiiiiiiiiiiiiii e 278
Gold Challenge: Camera OVEIlaYcc.viiuiiiiiiiiii e 278
For the More Curious: Navigating Implementation Filesccc.ccoeviiiiiiininn 279
I IMARK . e 281

16. Saving, Loading, and Application STatescc.veeuiiuniiuniiieiieiiiei et e e eeeaaaes 283
ATCRIVIIIE oot e 284
APPLCAON SANADOXieniiiii et 287
Constructing a file URL ..ot 288
NSKeyedArchiver and NSKeyedUnarchiverccoceuviiiiiiiiiiiiiiiniiiiii e, 289
Loading fllescoouiiiiiiii e 292
Application States and Transitionscceuveiiuiiiiniiiiiniiieei et 293
Writing to the Filesystem with Dataccoooooiiiiiiiiiiiiiiii e 295
Error Handlingcoouviiiiiiiiiiiii e 298
Bronze Challenge: PNG ... 300
For the More Curious: Application State Transitionsc.eeuueeuneeueiiieiineiieeieeineeanes 301
For the More Curious: Reading and Writing to the Filesystemcccooiiiiiiiniinen.. 302
For the More Curious: The Application Bundleccoooiiiiiiiiiiiiiiiie 304
17, SIZE CLASSES evvneeiinetiiieetie ettt ettt et et et ettt et et et et e eaas 307
Modifying Traits for a Specific Size Classc.oviuiiiiiiiiiiiii e 308
Bronze Challenge: Stacked Text Field and Labelsccocoviiiiiiiiiiniiniiin 313
18. Touch Events and UIRESPONAETc.uiiuniiuiiniiniiie et e e e 315
TOUCH EVENLS ..oeuiitiiiiii ittt ettt 316
Creating the TouchTracker AppliCationccuiiiuiiiniiiniiiiiie e 317
Creating the Line STrUCEc..iiuniiiii e 318
SEIUCES .ttt ettt ettt ettt et et e e et et et et et et et e eaa e 319
Value types VS TefEIeNCE LYPESueevuniiruniiiiieiiieeiie ettt ettt ea e 319
Creating DIaWVIEWcouiii ittt et et e e e 320
Drawing with Draw VIEWc.iiuiiiiiiiiiii e 321
Turning Touches INt0 LINESccuuiitniiiii e 322
Handling multiple tOUChESc..oiuiiiiiiiiii e 323
@IBINSPECLADIE ...o.ueti ittt et ettt et e s 328
Silver Challenge: COLOTSiuuiin ittt et et e e e e e e 330
Gold Challenge: CAICIESuiuniii ittt ettt e e 330
For the More Curious: The Responder Chainooooiiiiiiiiiiiiiiiii e 331
For the More Curious: UICONLIOLcceiuniiiiiiiiiiiiiiieei e 332
19. UlGestureRecognizer and UIMenuControllerc.ceeiuuuiiiiniiiiiiiineiiieiiieeiieeeiieeenen. 333
UIGestureRecognizer SUDCIASSESc.uuiiuiiniiieiie et 334
Detecting Taps with UITapGestureReCOZNIZErceuuviuiiniiiiiiiiiiiieeeeece e 334
Multiple GeSture RECOZNIZETSccuuiiuniiiiiiiiiie e 336
UIMENUCONLIOLIET ...eeuniiiiiiiiiiiiie ettt e eae e e 339
More GeSture RECOZNIZEISueuuniiniiieiie ettt et e 341
UILongPressGestureRECOZNIZETcvuuiiuiiieiieiieie e 341
UlIPanGestureRecognizer and simultaneous reCOZNIZErsc.eeuueeueuneenneeuneennnenn. 342
More on UIGeStuUreRECOZNIZETivuuiiniiiiiiei e 346
Silver Challenge: MySterious LINeSccuiiiuiiiniiiniiiiiiie et 347
Gold Challenge: Speed and SiZec..oiuuiiiniiiiii e 347
Platinum Challenge: COIOrsiuuiiiiiii e 347

iOS Programming

For the More Curious: UIMenuController and UIResponderStandardEditActions 348
20. WED SEIVICES ..euuiiiieiiieiii ettt ettt ettt et et ettt et e et e et e eaanes 349
Starting the Photorama ApPPLICAtIONceuuiiuiitiiiiiiii e 350
Building the URL ..o e 352
Formatting URLS and reqUESESccuuiiuiiniiieiieiie et eae e 352
URLCOMPONEIIES .. c.ueetneetnette it et et et ettt et e e e e et et et e e et e et e e e eaeenns 353
Sending the REQUESE ... c..iunii et 357
URLSESSION ..ttt et et ettt e e ettt e et e e e et e e eanas 357
Modeling the PROLOo.uiiiiiiiii e 360
TJSON DALA ..ot e e et 361
JSONSEIIAIZAION ...eeniin it eanas 362
Enumerations and associated Valuescooviiiiiiiiiiiiiiiiiiiie e 363
Parsing JSON dataoeniiniiiii e 364
Downloading and Displaying the Image Datacocoviiiiiiiiiiiiiiii e 371
The Main TRreadc..ooueiiiii e 374
Bronze Challenge: Printing the Response Informationccoooiviiiiiiiiiiininn. 375
Silver Challenge: Fetch Recent Photos from Flickr ..., 375
For the More Curious: HTTP ... 376
21, COIIECLION VIBWSiiiiniiiieiii ettt ettt et ettt e e et e e et e eeaaees 379
Displaying the GIidc.ocouiiiiiiiiii e 380
Collection VIiew Data SOUICEcceuuiiiiuiiiieiiii i 382
Customizing the Layoutoouiiiiiiii e 385
Creating a Custom UICollectionVIeWCellc..iiuiiiiiiiiiiiiiiiii e 388
Downloading the Image Datacoouiiiiiiiiiiiiiiiiii e 392
EXEENSIONS ..cvtitiiiineiii ettt ettt et et ettt et e 395
IMage CaChINgcoouviiiiiii e 397
Navigating to @ PROTOooouiiiiiiiiii e 398
Silver Challenge: Updated Item SiZescc.oeeuiiiuiiiiiiiiiiiei e 401
Gold Challenge: Creating a Custom Layoutcccccoiiiiiiiiiiiiiiiiiiieee e, 401
22, €T DALA ...t 403
ODbJECE GIaAPRS .neeeieei et 403
21 13 13 (<SPPSR 403
MOAEING IEITIES ..evneeteitein et ettt ettt et et e e e et et e e e e e eaneenns 404
Transformable attribULEscc.iiiuiiiiiiiii e 406
NSManagedObject and SUDCIASSESocuueeuneiieiieii e 406
INSPErsiStENTCONTAINETetueitieiteit ettt et et et e e e e et et et e e e et e e e eaeeneens 408
UPating TEEIMS ... cunieeiiei et ettt et ea e 408
Inserting into the CONLEXE «....iivuniiitiiiiiiiiii ettt et 409
SAVING CRANZES ..eniinii e 411
Updating the Data SOUICEcouuiiiiiiiiiii e 412
Fetch requests and PrediCatesc..veuueiueiiiiiii et 412
Bronze Challenge: Photo View COUNEouuiiniiiiiiiieiiie e 416
For the More Curious: The Core Data Stackcooiiiiiiiiiiiiiiii e 416
NSManagedObjectMOdelouuiiiiiiiiiie e 416
NSPersistentStoreCoOrdiNatoreeuueiiinieii ettt et eaae e 416
NSManagedObJECtCONIEXEeuniieiieit ettt ee e e e e e ees 416

23. Core Data RelationShipsc..oiuuiiuiiiieiiei e 417
ReIAtiONSIIPS ..eenieeie e e e e 418

iOS Programming

Adding Tags to the INterfacec.oeiuiiiiiiiii e 421
Background TasKsc.ueeuiiiii e 432
Silver Challenge: FaVOTItescuuiiuiiniie et 436

24, ACCESSIDIIILY .o.ueeneitii et 437
VOICEOVET ..ttt et ettt e et e e et e e e eaans 437
TestiNg VOICEOVETuuiiiiiiiiiiiiiiieiie ettt et 439
Accessibility in Photoramacooooiiiiiiiiiiiii e 441

25, ATEIWOTA ...eenitei e e et et 445
WHhat t0 DO NEXE eeuneiiiiiiiie ittt e 445
Shameless PIUZSouniiiiii e e e 445
DX e et 449

Xi

Introduction

As an aspiring i0S developer, you face three major tasks:

* You must learn the Swift language. Swift is the recommended development language for i0S. The
first two chapters of this book are designed to give you a working knowledge of Swift.

* You must master the big ideas. These include things like delegation, archiving, and the proper use
of view controllers. The big ideas take a few days to understand. When you reach the halfway
point of this book, you will understand these big ideas.

* You must master the frameworks. The eventual goal is to know how to use every method of every
class in every framework in iOS. This is a project for a lifetime: There are hundreds of classes
and thousands of methods available in i0S, and Apple adds more classes and methods with every
release of i10S. In this book, you will be introduced to each of the subsystems that make up the
i0OS SDK, but you will not study each one deeply. Instead, our goal is to get you to the point
where you can search and understand Apple’s reference documentation.

We have used this material many times at our iOS bootcamps at Big Nerd Ranch. It is well tested and
has helped thousands of people become iOS developers. We sincerely hope that it proves useful to you.

Prerequisites

This book assumes that you are already motivated to learn to write iOS apps. We will not spend any
time convincing you that the iPhone, iPad, and iPod touch are compelling pieces of technology.

We also assume that you have some experience programming and know something about object-
oriented programming. If this is not true, you should probably start with Swift Programming: The Big
Nerd Ranch Guide.

What Has Changed in the Sixth Edition?

All of the code in this book has been updated for Swift 3.0, which was a major update to the Swift
language. Throughout the book, you will see how to use Swift’s capabilities and features to write better
108 applications. We have come to love Swift at Big Nerd Ranch and believe you will, too.

Other additions include new chapters on debugging and accessibility and improved coverage of Core
Data. We have also updated various chapters to use the technologies and APIs introduced in iOS 10.

This edition assumes that the reader is using Xcode 8.1 or later and running applications on an iOS 10
or later device.

Besides these obvious changes, we made thousands of tiny improvements that were inspired by
questions from our readers and our students. Every chapter of this book is just a little better than the
corresponding chapter from the fifth edition.

Xiii

Introduction

Our Teaching Philosophy

This book will teach you the essential concepts of iOS programming. At the same time, you will type
in a lot of code and build a bunch of applications. By the end of the book, you will have knowledge
and experience. However, all the knowledge should not (and, in this book, will not) come first. That
is the traditional way of learning we have all come to know and hate. Instead, we take a learn-while-
doing approach. Development concepts and actual coding go together.

Here is what we have learned over the years of teaching iOS programming:

* We have learned what ideas people must grasp to get started programming, and we focus on that
subset.

¢ We have learned that people learn best when these concepts are introduced as they are needed.

* We have learned that programming knowledge and experience grow best when they grow
together.

* We have learned that “going through the motions” is much more important than it sounds. Many
times we will ask you to start typing in code before you understand it. We realize that you may
feel like a trained monkey typing in a bunch of code that you do not fully grasp. But the best way
to learn coding is to find and fix your typos. Far from being a drag, this basic debugging is where
you really learn the ins and outs of the code. That is why we encourage you to type in the code
yourself. You could just download it, but copying and pasting is not programming. We want better
for you and your skills.

What does this mean for you, the reader? To learn this way takes some trust — and we appreciate yours.
It also takes patience. As we lead you through these chapters, we will try to keep you comfortable

and tell you what is happening. However, there will be times when you will have to take our word

for it. (If you think this will bug you, keep reading — we have some ideas that might help.) Do not get
discouraged if you run across a concept that you do not understand right away. Remember that we are
intentionally not providing all the knowledge you will ever need all at once. If a concept seems unclear,
we will likely discuss it in more detail later when it becomes necessary. And some things that are not
clear at the beginning will suddenly make sense when you implement them the first (or the twelfth)
time.

People learn differently. It is possible that you will love how we hand out concepts on an as-needed
basis. It is also possible that you will find it frustrating. In case of the latter, here are some options:

» Take a deep breath and wait it out. We will get there, and so will you.

* Check the index. We will let it slide if you look ahead and read through a more advanced
discussion that occurs later in the book.

* Check the online Apple documentation. This is an essential developer tool, and you will want
plenty of practice using it. Consult it early and often.

o If Swift or object-oriented programming concepts are giving you a hard time (or if you think they
will), you might consider backing up and reading our Swift Programming: The Big Nerd Ranch
Guide.

Xiv

How to Use This Book

How to Use This Book

This book is based on the class we teach at Big Nerd Ranch. As such, it was designed to be consumed
in a certain manner.

Set yourself a reasonable goal, like, “I will do one chapter every day.” When you sit down to attack

a chapter, find a quiet place where you will not be interrupted for at least an hour. Shut down your
email, your Twitter client, and your chat program. This is not a time for multitasking; you will need to
concentrate.

Do the actual programming. You can read through a chapter first, if you like. But the real learning
comes when you sit down and code as you go. You will not really understand the idea until you have
written a program that uses it and, perhaps more importantly, debugged that program.

A couple of the exercises require supporting files. For example, in the first chapter you will need an
icon for your Quiz application, and we have one for you. You can download the resources and solutions
to the exercises from www.bignerdranch.com/solutions/i0SProgramming6ed.zip.

There are two types of learning. When you learn about the Peloponnesian War, you are simply adding
details to a scaffolding of ideas that you already understand. This is what we will call “Easy Learning.”
Yes, learning about the Peloponnesian War can take a long time, but you are seldom flummoxed by

it. Learning iOS programming, on the other hand, is “Hard Learning,” and you may find yourself

quite baffled at times, especially in the first few days. In writing this book, we have tried to create an
experience that will ease you over the bumps in the learning curve. Here are two things you can do to
make the journey easier:

* Find someone who already knows how to write iOS applications and will answer your questions.
In particular, getting your application onto a device the first time is usually very frustrating if you
are doing it without the help of an experienced developer.

* Get enough sleep. Sleepy people do not remember what they have learned.

How This Book Is Organized

In this book, each chapter addresses one or more ideas of iOS development through discussion and
hands-on practice. For more coding practice, most chapters include challenge exercises. We encourage
you to take on at least some of these. They are excellent for firming up your grasp of the concepts
introduced in the chapter and for making you a more confident iOS programmer. Finally, most chapters
conclude with one or two For the More Curious sections that explain certain consequences of the
concepts that were introduced earlier.

Chapter 1 introduces you to iOS programming as you build and deploy a tiny application called Quiz.
You will get your feet wet with Xcode and the iOS simulator along with all the steps for creating
projects and files. The chapter includes a discussion of Model-View-Controller and how it relates to
i0S development.

Chapter 2 provides an overview of Swift, including basic syntax, types, optionals, initialization, and
how Swift is able to interact with the existing iOS frameworks. You will also get experience working in
a playground, Xcode’s prototyping tool.

In Chapter 3, you will focus on the iOS user interface as you learn about views and the view hierarchy
and create an application called WorldTrotter.

XV

http://www.bignerdranch.com/solutions/iOSProgramming6ed.zip

Introduction

Chapter 4 introduces delegation, an important iOS design pattern. You will also add a text field to
WorldTrotter.

In Chapter 5, you will expand WorldTrotter and learn about using view controllers for managing user
interfaces. You will get practice working with views and view controllers as well as navigating between
screens using a tab bar.

In Chapter 6, you will learn how to manage views and view controllers in code. You will add a
segmented control to WorldTrotter that will let you switch between various map types.

Chapter 7 introduces the concepts and techniques of internationalization and localization. You will
learn about Locale, strings tables, and Bundle as you localize parts of WorldTrotter.

In Chapter 8, you will learn about and add different types of animations to the Quiz project that you
created in Chapter 1.

Chapter 9 will walk you through some of the tools at your disposal for debugging — finding and fixing
issues in your application.

Chapter 10 introduces the largest application in the book — Homepwner. (“Homepwner” is not a typo;
you can find the definition of “pwn” at www.wiktionary.org.) This application keeps a record of your
items in case of fire or other catastrophe. Homepwner will take eight chapters to complete.

In Chapter 10 — Chapter 12, you will work with tables. You will learn about table views, their view
controllers, and their data sources. You will learn how to display data in a table, how to allow the user
to edit the table, and how to improve the interface.

Chapter 13 introduces stack views, which will help you create complex interfaces easily. You will use a
stack view to add a new screen to Homepwner that displays an item’s details.

Chapter 14 builds on the navigation experience gained in Chapter 5. You will use
UINavigationController to give Homepwner a drill-down interface and a navigation bar.

Chapter 15 introduces the camera. You will take pictures and display and store images in Homepwner.

In Chapter 16, you will add persistence to Homepwner, using archiving to save and load the application
data.

In Chapter 17, you will learn about size classes, and you will use these to update Homepwner’s
interface to scale well across various screen sizes.

In Chapter 18 and Chapter 19, you will create a drawing application named TouchTracker

to learn about touch events. You will see how to add multitouch capability and how to use
UIGestureRecognizer to respond to particular gestures. You will also get experience with the first
responder and responder chain concepts and more practice using structures and dictionaries.

Chapter 20 introduces web services as you create the Photorama application. This application fetches
and parses JSON data from a server using URLSession and JSONSerialization.

In Chapter 21, you will learn about collection views as you build an interface for Photorama using
UICollectionView and UICollectionViewCell.

In Chapter 22 and Chapter 23, you will add persistence to Photorama using Core Data. You will store
and load images and associated data using an NSManagedObjectContext.

Chapter 24 will walk you through making your applications accessible to more people by adding
VoiceOver information.

XVi

Style Choices

Style Choices

This book contains a lot of code. We have attempted to make that code and the designs behind it
exemplary. We have done our best to follow the idioms of the community, but at times we have
wandered from what you might see in Apple’s sample code or code you might find in other books. In
particular, you should know up front that we nearly always start a project with the simplest template
project: the single view application. When your app works, you will know it is because of your efforts
— not because of behavior built into the template.

Typographical Conventions

To make this book easier to read, certain items appear in certain fonts. Classes, types, methods,
and functions appear in a bold, fixed-width font. Classes and types start with capital letters, and
methods and functions start with lowercase letters. For example, “In the loadView() method of the
RexViewController class, create a constant of type String.”

Variables, constants, and filenames appear in a fixed-width font but are not bold. So you will see, “In

"o

ViewController.swift, add a variable named fido and initialize it to "Rufus".

Application names, menu choices, and button names appear in a sans serif font. For example, “Open
Xcode and select New Project... from the File menu. Select Single View Application and then click
Next.”

All code blocks are in a fixed-width font. Code that you need to type in is bold; code that you need

to delete is struck through. For example, in the following code, you would delete the line import
Foundation and type in the two lines beginning @IBOutlet. The other lines are already in the code and
are included to let you know where to add the new lines.

import UIKit

class ViewController: UIViewController {

@IBOutlet var questionLabel: UILabel!
@IBOutlet var answerLabel: UILabel!

Necessary Hardware and Software

To build the applications in this book, you must have Xcode 8.1, which requires a Mac running macOS
El Capitan version 10.11.4 or later. Xcode, Apple’s Integrated Development Environment, is available
on the App Store. Xcode includes the iOS SDK, the iOS simulator, and other development tools.

You should join the Apple Developer Program, which costs $99/year, because:
* Downloading the latest developer tools is free for members.
* You cannot put an app in the store until you are a member.

If you are going to take the time to work through this entire book, membership in the Apple Developer
Program is worth the cost. Go to developer.apple.com/programs/ios/ to join.

XVii

http://developer.apple.com/programs/ios/

Introduction

What about i0OS devices? Most of the applications you will develop in the first half of the book are for
iPhone, but you will be able to run them on an iPad. On the iPad screen, iPhone applications appear in
an iPhone-sized window. Not a compelling use of iPad, but that is OK when you are starting with iOS.
In the early chapters, you will be focused on learning the fundamentals of the iOS SDK, and these are
the same across iOS devices. Later in the book, you will see how to make applications run natively on
both iOS device families.

Excited yet? Good. Let’s get started.

XViii

A Simple iOS Application

In this chapter, you are going to write an iOS application named Quiz. This application will show a
question and then reveal the answer when the user taps a button. Tapping another button will show the
user a new question (Figure 1.1).

Figure 1.1 Your first application: Quiz

Carrier & 12:26 PM L]

What is the secret to iOS mastery?

Next Question

77

Show Answer

When you are writing an i0S application, you must answer two basic questions:

* How do I get my objects created and configured properly? (Example: “I want a button here that
says Next Question.”)

* How do I make my app respond to user interaction? (Example: “When the user taps the button, I
want this piece of code to be executed.”)

Most of this book is dedicated to answering these questions.

Chapter 1 A Simple iOS Application

As you go through this first chapter, you will probably not understand everything that you are doing,
and you may feel ridiculous just going through the motions. But going through the motions is enough
for now. Mimicry is a powerful form of learning; it is how you learned to speak, and it is how you will
start iOS programming. As you become more capable, you will experiment and challenge yourself to
do creative things on the platform. For now, go ahead and do what we show you. The details will be
explained in later chapters.

Creating an Xcode Project

Open Xcode and, from the File menu, select New — Project.... (If Xcode opens to a welcome screen,
select Create a new Xcode project.)

A new workspace window will appear and a sheet will slide down from its toolbar. At the top, find the
iOS section and then the Application area (Figure 1.2). You are offered several application templates to
choose from. Select Single View Application.

Figure 1.2 Creating a project

Choose a template for your new project:
watchOS tvOS macOS Cross-platform @ Filter

Application

1 E -
00 * see
Single View Game Master-Detail Page-Based Tabbed
Application Application Application
&= O
oo

Sticker Pack iMessage
Application Application

Framework & Library

& 0 W)
‘) L g]]i
0 = =vN\
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel —

This book was created for Xcode 8.1. The names of these templates may change with new Xcode
releases. If you do not see a Single View Application template, use the simplest-sounding template. You
can also visit the Big Nerd Ranch forum for this book at forums.bignerdranch. com for help working
with newer versions of Xcode.

http://forums.bignerdranch.com

Creating an Xcode Project

Click Next and, in the next sheet, enter Quiz for the Product Name (Figure 1.3). The organization
name and identifier are required to continue. You can use Big Nerd Ranch or any organization
name you would like. For the organization identifier, you can use com.bignerdranch or

com.yourcompanynamehere.

From the Language pop-up menu, choose Swift, and from the Devices pop-up menu, choose Universal.
Make sure that the Use Core Data checkbox is unchecked.

Figure 1.3 Configuring a new project

Choose options for your new project:

Product Name:
Team:
Organization Name:

Organization Identifier:

Bundle Identifier:
Language:

Devices:

Cancel

Quiz

None
Big Nerd Ranch
com.bignerdranch
com.bignerdranch.Quiz

Swift

Universal

Use Core Data
Include Unit Tests
Include Ul Tests

o

(oo

Previous | IS

Click Next and, in the final sheet, save the project in the directory where you plan to store the exercises
in this book. Click Create to create the Quiz project.

Chapter 1 A Simple iOS Application

Your new project opens in the Xcode workspace window (Figure 1.4).

Figure 1.4 Xcode workspace window

eve » /A Quiz) g iPhone 7
BR Qs o =o 88« B auiz
B O General
v [Quiz
ay PROJECT
2 AppDelegate. swift
B quiz
3 ViewController.swift
Main.storyboard TARGETS
B Assets.xcassets. /A Quiz
LaunchScreen storyboard QuizTests
Info.plist QuizUiTests
» [QuizTests
» 19 QuizUiTests
» [Products
+(® OHI+ — &

Quiz: Ready | Today at 2:14 PM

Capabilties Resource Tags.
¥ identity

Display Name

Bundle Identifier

Version

Build

¥ signing

Team
Provisioning Profile

Signing Certificate

Status.

¥ Deployment Info

Deployment Target
Devices
Main Interface

Device Orientation

Status Bar Style

Info Build Settings Build Phases

‘com.bignerdranch.Quiz
10

1

Automatically manage signing

None
Xcode Managed Profile

i0S Developer

© Signing for "Quiz" requires a development team.

Univrsal
Vain
Portaait
Upside Down
Landscape Left
Landscape Right
Defaut

Hide status bar
Requires full screen

Build Rules.

= o« Oga 0O

0o
Identity and Type
Project Document
Project Format _ Xcode 3.2-compatible
Organization Big Nerd Ranch

Class Prefix

Text Settings
Indent Using _Spaces

Widths alc 4
Tab Indent

Wrap lines

Bar Button Item - Ropresents an
olbar or

Item | item on a UIToc
UiNavigationitem object.

Fixed Space Bar Button Item -

UlToolbar abiect.

83 ®uib o

lo—

The lefthand side of the workspace window is the navigator area. This area displays different

Utilities

navigators — tools that show you different parts of your project. You can open a navigator by selecting
one of the icons in the navigator selector, which is the bar just above the navigator area.

The navigator currently open is the project navigator. The project navigator shows you the files that
make up a project (Figure 1.5). You can select one of these files to open it in the editor area to the right
of the navigator area.

The files in the project navigator can be grouped into folders to help you organize your project. A few
groups have been created by the template for you. You can rename them, if you want, or add new ones.
The groups are purely for the organization of files and do not correlate to the filesystem in any way.

Figure 1.5 Quiz application’s files in the project navigator

HR QAo =

&

v

v

Quiz
=

3

AppDelegate.swift

| ViewController.swift

Main.storyboard

Assets.xcassets

LaunchScreen.storyboard

Info.plist
QuizTests
QuizUlITests

Products

Model-View-Controller

Model-View-Controller

Before you begin your application, let’s discuss a key concept in application architecture:
Model-View-Controller, or MVC. MVC is a design pattern used in iOS development. In MVC, every
instance belongs to either the model layer, the view layer, or the controller layer. (Layer here simply
refers to one or more objects that together fulfill a role.)

» The model layer holds data and knows nothing about the user interface, or UL In Quiz, the model
will consist of two ordered lists of strings: one for questions and another for answers.

Usually, instances in the model layer represent real things in the world of the user. For example,
when you write an app for an insurance company, your model will almost certainly contain a
custom type called InsurancePolicy.

» The view layer contains objects that are visible to the user. Examples of view objects, or views,
are buttons, text fields, and sliders. View objects make up an application’s Ul In Quiz, the labels
showing the question and answer and the buttons beneath them are view objects.

* The controller layer is where the application is managed. Controller objects, or controllers, are
the managers of an application. Controllers configure the views that the user sees and make sure
that the view and model objects stay synchronized.

In general, controllers typically handle “And then?” questions. For example, when the user selects
an item from a list, the controller determines what the user sees next.

Figure 1.6 shows the flow of control in an application in response to user input, such as the user
tapping a button.

Figure 1.6 MVC pattern

User interacts with view object

i
I
I
I
:
I
| View sends message Controller updates
¢ to controller model objects

Controller updates view with
changes in model objects

Controller takes data
from model objects that its
views are interested in

Notice that models and views do not talk to each other directly; controllers sit squarely in the middle of
everything, receiving messages and dispatching instructions.

Chapter 1 A Simple iOS Application

Designing Quiz

You are going to write the Quiz application using the MVC pattern. Here is a breakdown of the
instances you will be creating and working with:

* The model layer will consist of two instances of [String].
» The view layer will consist of two instances of UILabel and two instances of UIButton.
» The controller layer will consist of an instance of ViewController.

These instances and their relationships are laid out in the diagram for Quiz shown in Figure 1.7.

Figure 1.7 Object diagram for Quiz
; Views UlButton UlLabel
: action = showNextQuestion: text = "What is 7+77?"

UlLabel
text ="??2?"

UiButton
action = showAnswer:

questionLabel

: Controller answerlLabel :
ViewController :

currentQuestionindex = 0 :

_ answers questions :
... '
: Model :

—»"What is 7+77"

—»"What is the capital of Vermont?"
—“What is cognac made from?”

II1 4II ‘
"Montpelier" €————
"Grapes" €¢—————

[Buns]
[Buins]

Figure 1.7 is the big picture of how the finished Quiz application will work. For example, when the
Next Question button is tapped, it will trigger a method in ViewController. A method is a lot like a
function — a list of instructions to be executed. This method will retrieve a new question from the array
of questions and ask the top label to display that question.

It is OK if this diagram does not make sense yet — it will by the end of the chapter. Refer back to it as
you build the app to see how it is taking shape.

You are going to build Quiz in steps, starting with the visual interface for the application.

Interface Builder

Interface Builder

You are using the Single View Application template because it is the simplest template that Xcode
offers. Still, this template has a significant amount of magic in that some critical components have
already been set up for you. For now, you will just use these components, without attempting to gain a
deep understanding of how they work. The rest of the book will be concerned with those details.

In the project navigator, click once on the Main.storyboard file. Xcode will open its graphic-style
editor called Interface Builder.

Interface Builder divides the editor area into two sections: the document outline, on the lefthand side,
and the canvas, on the right.

This is shown in Figure 1.8. If what you see in your editor area does not match the figure, you may
have to click on the Show Document Outline button. (If you have additional areas showing, do not
worry about them.) You may also have to click on the disclosure triangles in the document outline to
reveal content.

Figure 1.8 Interface Builder showing Main.storyboard

Document Outline Canvas
| |
88 < QJ Quiz l Quiz Main.storyboard Main.storyboard (Base)) No Selection l
v [E] View Controller Scene
4 View Controller View Controller
[§8 First Responder p—
_J

£ Exit
Storyboard Entry Point

® Filt IEIV\Viewas: iPhone 7 (wC hR) — 100% -+ & o] tad

Show / Hide Document Outline

Chapter 1 A Simple iOS Application

The rectangle that you see in the Interface Builder canvas is called a scene and represents the only
“screen” or view your application has at this time (remember that you used the single view application
template to create this project).

In the next section, you will learn how to create a Ul for your application using Interface Builder.
Interface Builder lets you drag objects from a library onto the canvas to create instances and also lets
you establish connections between those objects and your code. These connections can result in code
being called by a user interaction.

A crucial feature of Interface Builder is that it is not a graphical representation of code contained in
other files. Interface Builder is an object editor that can create instances of objects and manipulate their
properties. When you are done editing an interface, it does not generate code that corresponds to the
work you have done. A .storyboard file is an archive of object instances to be loaded into memory
when necessary.

Building the Interface

Let’s get started on your interface. You have selected Main.storyboard to reveal its single scene in the
canvas (Figure 1.9).

Figure 1.9 The scene inMain.storyboard

|« G

To start, make sure your scene is sized for iPhone 7. At the bottom of the canvas, find the View as
button. It will likely say something like View as: iPhone 7 (wC hR). (The wC hR will not make sense
right now; we will explain it in Chapter 17.) If it says iPhone 7 already, then you are all set. If not,
click on the View as button and select the fourth device from the left, which corresponds to iPhone 7
(Figure 1.10).

Creating view objects

Figure 1.10 Viewing the scene for iPhone 7

] View as:iPhone 7 («C rR)

U000 0=

It is time to add your view objects to that blank slate.

Creating view objects

Make sure that the utility area within Xcode’s window is visible. You may need to click on the
rightmost button of the ['1 (=] [T control in the top-right corner of the window. The utility area is

to the right of the editor area and has two sections: the inspector and the library. The top section is
the inspector, which displays settings for a file or object that is selected in the editor area. The bottom
section is the library, which lists items that you can add to a file or project.

At the top of each section in the utility area is a selector for different inspectors and libraries
(Figure 1.11).

Figure 1.11 Xcode utility area

: ® T B O ———Inspector selector

<«———|nspector

0 e <— ibrary selector

View Controller - A controller that
manages a view.

external storyboard.

<«—Library

controller that manages navigation

through a hierarchy of views.

]
]
I
-
1
1
]
I
|
1
i
1
: Storyboard Reference - Provides a
1
1
1
:
i < Navigation Controller - A
1
1
1
]
I
1
1
1

]
r
|
]
]
]
!
!
]
]
]
]
]
. N !
placeholder for a view controllerinan 1
I
I
]
]
!
]
]
]
]
]
!
]
I
]

_________________________________ <+———Search library

Your application interface requires four view objects: two buttons to accept user input and two text
labels to display information. To add them, first make sure you can see the object library, as shown in
Figure 1.11, by selecting the ® tab from the library selector.

Chapter 1 A Simple iOS Application

The object library contains the objects that you can add to a storyboard file to compose your interface.
Find the Label object by either scrolling down through the list or by using the search bar at the bottom
of the library. Select this object in the library and drag it onto the view object on the canvas. Drag the
label around the canvas and notice the dashed blue lines that appear when the label is near the center of
the canvas (Figure 1.12). These guidelines will help you lay out your interface.

Figure 1.12 Adding a label to the canvas

]

Label

Using the guidelines, position the label in the horizontal center of the view and near the top, as shown
in Figure 1.12. Eventually, this label will display questions to the user. Drag a second label onto the
view and position it in the horizontal center, closer to the middle. This label will display answers.

Next, find Button in the object library and drag two buttons onto the view. Position one below each
label.

10

Creating view objects

You have now added four view objects to the ViewController’s Ul Notice that they also appear in the

document outline. Your interface should look like Figure 1.13.

Figure 1.13 Building the Quiz interface

5]

=

Label

Button

Label

Button

11

Chapter 1 A Simple iOS Application

Configuring view objects

Now that you have created the view objects, you can configure their attributes. Some attributes of a
view, like size, position, and text, can be changed directly on the canvas. For example, you can resize
an object by selecting it in the canvas or the document outline and then dragging its corners and edges
in the canvas.

Begin by renaming the labels and buttons. Double-click on each label and replace the text with ?2??.
Then double-click the upper button and change its name to Next Question. Rename the lower button to
Show Answer. The results are shown in Figure 1.14.

Figure 1.14 Renaming the labels and buttons

7] [

7?7

Next Question

77

Show Answer

You may have noticed that because you have changed the text in the labels and buttons, and therefore
their widths, they are no longer neatly centered in the scene. Click on each of them and drag to center
them again, as shown in Figure 1.15.

Figure 1.15 Centering the labels and buttons

o B

#ie

Next Questiord
o o

255
ooo
a u} o
Show Answep
a a o

12

Running on the simulator

Running on the simulator

To test your U, you are going to run Quiz on Xcode’s iOS simulator.

To prepare Quiz to run on the simulator, find the current scheme pop-up menu on the Xcode toolbar
(Figure 1.16).

Figure 1.16 iPhone 7 scheme selected

Current scheme pop-up menu

Y o) /A Quiz) @@ iPhone 7

If it says something generic like iPhone 7, then the project is set to run on the simulator and you are
good to go. If it says something like Christian's iPhone, then click and choose iPhone 7 from the
pop-up menu. The iPhone 7 scheme will be your simulator default throughout this book.

Click the triangular play button in the toolbar. This will build (compile) and then run the application.
You will be doing this often enough that you may want to learn and use the keyboard shortcut
Command-R.

After the simulator launches you will see that the interface has all the views you added, neatly centered
as you configured them in Interface Builder.

Now go back to the current scheme pop-up menu and select iPhone 7 Plus as your simulator of choice.
Run the application again and you will notice that while the views you added are still present, they are
not centered as they were on iPhone 7. This is because the labels and buttons currently have a fixed
position on a screen, and they do not remain centered on the main view. To correct this problem, you
will use a technology called Auto Layout.

13

Chapter 1 A Simple iOS Application

A brief introduction to Auto Layout

As of now, your interface looks nice in the Interface Builder canvas. But iOS devices come in ever
more screen sizes, and applications are expected to support all screen sizes and orientations — and
perhaps more than one device type. You need to guarantee that the layout of view objects will be
correct regardless of the screen size or orientation of the device running the application. The tool for
this task is Auto Layout.

Auto Layout works by specifying position and size constraints for each view object in a scene. These
constraints can be relative to neighboring views or to container views. A container view is just a view
object that, as the name suggests, contains another view. For example, take a look at the document
outline for Main.storyboard (Figure 1.17).

Figure 1.17 Document layout with a container view

v View Controller Scene
v View Controller
| Top Layout Guide
| Bottom Layout Guide
L ???
B Next Question
L ?2?
B Show Answer
i First Responder

Exit

Storyboard Entry Point

You can see in the document outline that the labels and buttons you added are indented with respect
to a View object. This view object is the container of the labels and buttons, and the objects can be
positioned and sized relative to this view.

To begin specifying Auto Layout constraints, select the top label by clicking on it either on the canvas
or in the document outline. At the bottom of the canvas, notice the Auto Layout menus, shown in
Figure 1.18.

Figure 1.18 The Auto Layout menus

o B3 12 to taf

14

A brief introduction to Auto Layout

With the top label still selected, click on the I& icon to reveal the Align menu shown in Figure 1.19.

Figure 1.19 Centering the top label in the container

Add New Alignment Constraints

@ .
] .
] v
@ .
@ .
2] .
@ v
EB Horizontally in Container 0 v
@ Vertically in Container 0 v

Update Frames | None

Add 1 Constraint
B3 B to tai

Within the Align menu, check the Horizontally in Container checkbox to center the label in the
container. Then click the Add 1 Constraint button. This constraint guarantees that on any size screen, in
any orientation, the label will be centered horizontally.

Now you need to add more constraints to center the lower label and the buttons with respect to the
top label and to lock the spacing between them. Select the four views by Command-clicking on them
one after another and then click on the t™ icon to open the Add New Constraints menu shown in
Figure 1.20.

Figure 1.20 Adding constraints to center and fix the spacing between views

Add New Constraints

1
|-1[] -

Spacing to nearest neighbor

Constrain to margins
Width -
Height v

B equal widths
@ Equal Heights
@ Aspect Ratio

@ Align | Horizontal Centers

Update Frames | Items of New Constraints

Add 7 Constraints

QBB o A

15

Chapter 1 A Simple iOS Application

Click on the red vertical dashed segment near the top of the menu. When you click on the segment,

it will become solid red (shown in Figure 1.20), indicating that the distance of each view is pinned to
its nearest top neighbor. Also, check the Align box and then select Horizontal Centers from the pop-up
menu. For Update Frames, make sure that you have ltems of New Constraints selected. Finally, click
on the Add 7 Constraints button at the bottom of the menu.

If you made any mistakes while adding constraints, you may see red or orange constraints and frames
on the canvas instead of the correct blue lines. If that is the case, you will want to clear the existing
constraints and go through the steps above again. To clear constraints, first select the background
(container) view. Then click the 21 icon to open the Resolve Auto Layout Issues menu. Select Clear
Constraints under the All Views in View Controller section (Figure 1.21). This will clear away any
constraints that you have added and give you a fresh start on adding the constraints back in.

Figure 1.21 Clearing constraints

Reset to Suggested Constraints
Clear Constraints

Reset to Suggested Constraints
Clear Constraints

= tOf A

Auto Layout can be a difficult tool to master, and that is why you are starting to use it in the first
chapter of this book. By starting early, you will have more chances to use it and get used to its
complexity. Also, dealing with problems before things get too complicated will help you debug layout
issues with confidence.

To confirm that your interface behaves correctly, build and run the application on the iPhone 7 Plus
simulator. After confirming that the interface looks correct, build and run the application on the iPhone
7 simulator. The labels and buttons should be centered on both.

16

Making connections

Making connections

A connection lets one object know where another object is in memory so that the two objects can
communicate. There are two kinds of connections that you can make in Interface Builder: outlets and
actions. An outlet is a reference to an object. An action is a method that gets triggered by a button or
some other view that the user can interact with, like a slider or a picker.

Let’s start by creating outlets that reference the instances of UILabel. Time to leave Interface Builder
and write some code.

Declaring outlets

In the project navigator, find and select the file named ViewController.swift. The editor area will
change from Interface Builder to Xcode’s code editor.

In ViewController.swift, start by deleting any code that the template added between class
ViewController: UIViewController { and the final brace, so that the file looks like this:

import UIKit
class ViewController: UIViewController {

b

(For simplicity, we will not show the line import UIKit again for this file.)

Next, add the following code that declares two properties. (Throughout this book, new code for you
to add will be shown in bold. Code for you to delete will be struck through.) Do not worry about
understanding the code or properties right now; just get it in.

class ViewController: UIViewController {
@IBOutlet var questionLabel: UILabel!
@IBOutlet var answerLabel: UILabel!

¥

This code gives every instance of ViewController an outlet named questionLabel and an outlet
named answerLabel. The view controller can use each outlet to reference a particular UILabel object
(i.e., one of the labels in your view). The @IBOutlet keyword tells Xcode that you will connect these
outlets to label objects using Interface Builder.

17

Chapter 1 A Simple iOS Application

Setting outlets
In the project navigator, select Main.storyboard to reopen Interface Builder.
You want the questionLabel outlet to point to the instance of UILabel at the top of the UL

In the document outline, find the View Controller Scene section and the View Controller object within
it. In your case, the View Controller stands in for an instance of ViewController, which is the object
responsible for managing the interface defined in Main.storyboard.

Control-drag (or right-click and drag) from the View Controller in the document outline to the top label
in the scene. When the label is highlighted, release the mouse and keyboard; a black panel will appear.
Select questionLabel to set the outlet, as shown in Figure 1.22.

Figure 1.22 Setting questionLabel

B8 < @1 Quiz Quiz Main.storyboard Main.storyboard (Base) View Controller Scene View Controller

v View Controller Scene

v View Cantroller [7‘ e E
b C
Top Layout Guiu= Sl W
_ Bottom Layout Guide (—
4 View
\L First Responder
[E] Exit
= 209
Storyboard Entry Point B Outiets
INIVRS cnswerLabel
questionLabel
view

?7??

Show Answer

(If you do not see questionLabel in the connections panel, double-check your ViewController.swift
file for typos.)

Now, when the storyboard file is loaded, the ViewController’s questionLabel outlet will
automatically reference the instance of UILabel at the top of the screen, which will allow the
ViewController to tell the label what question to display.

Set the answerLabel outlet the same way: Control-drag from the ViewController to the bottom UILabel
and select answerLabel (Figure 1.23).

18

Making connections

Figure 1.23 Setting answerlLabel

g < &1 Quiz Quiz Main.storyboard @ Main.storyboard (Base) ﬁ\:i View Controller Scene View Controller

v E View Controller Scene

v View Cantroller [= |
~ Top Laybut Guide

__ Bottom Layout Guide
4 View
gl First Responder
[E3 Exit

Storyboard Entry Point

7?7?

Next Question

392

B Outlets
Show A answerLabel
= questionLabel
view

Notice that you drag from the object with the outlet that you want to set to the object that you want that
outlet to point to.

Your outlets are all set. The next connections you need to make involve the two buttons.

Defining action methods

When a UIButton is tapped, it calls a method on another object. That object is called the farget. The
method that is triggered is called the action. This action is the name of the method that contains the
code to be executed in response to the button being tapped.

In your application, the target for both buttons will be the instance of ViewController. Each button
will have its own action. Let’s start by defining the two action methods: showNextQuestion(_:) and
showAnswer(_:).

Reopen ViewController.swift and add the two action methods after the outlets.
class ViewController: UIViewController {

@IBOutlet var questionLabel: UILabel!

@IBOutlet var answerLabel: UILabel!

@IBAction func showNextQuestion(_ sender: UIButton) {

}

@IBAction func showAnswer(_ sender: UIButton) {

}
b

You will flesh out these methods after you make the target and action connections. The @IBAction
keyword tells Xcode that you will be making these connections in Interface Builder.

19

Chapter 1 A Simple iOS Application

Setting targets and actions

Switch back to Main.storyboard. Let’s start with the Next Question button. You want its target to be
ViewController and its action to be showNextQuestion(_:).

To set an object’s target, you Control-drag from the object to its target. When you release the mouse,
the target is set, and a pop-up menu appears that lets you select an action.

Select the Next Question button in the canvas and Control-drag to the View Controller in the
document outline. When the View Controller is highlighted, release the mouse button and choose
showNextQuestion: under Sent Events in the pop-up menu, as shown in Figure 1.24.

Figure 1.24 Setting Next Question target/action

B < @ Quiz Quiz Main.storyboard Main.storyboard (Base)) [Z] View Controller Scene) View Controller View) B Next Question

v View Controller Scene ‘

(v View Caatroller
| Top Layout Guivs.

Action Segue W G|
Show
_ Bottom Layout Gui Show Detail (—

v View Present Modally
L Question Label Present As Popover

B |Next Question Custom
L 222 Sent Events 2?
: 8
B | Show Answer showAnswer: ! o
showNextQuestion:

> (&) Constraints INexTQQestiora

- Non-Adaptive Action Segue] o
Uy First Responder Push (deprecated)
[E] Exit Modal (deprecated)

Storyboard Entry Point

7%?

Show Answer

Now for the Show Answer button. Select the button and Control-drag from the button to the View
Controller. Choose showAnswer: from the pop-up menu.

20

Making connections

Summary of connections

There are now five connections between the ViewController and the view objects. You have set the
properties answerlLabel and questionLabel to reference the label objects — two connections. The

ViewController is the target for both buttons — two more. The project’s template made one additional

connection: The view property of ViewController is connected to the View object that represents the
background of the application. That makes five.

You can check these connections in the connections inspector. Select the View Controller in the
document outline. Then, in the utilities area, click the @ tab to reveal the connections inspector
(Figure 1.25).

Figure 1.25 Checking connections in the connections inspector

Oe = 4+ 0 @

Triggered Segues

Outlets
(CanswerLabel (% Answer Label @
(questionLabel (% Question Label @
searchDisplayController O
(Cview (% View @

Presenting Segues
Referencing Outlets
Referencing Outlet Collections
Received Actions
showAnswer: ® Show Answer [O)
Touch Up Inside
showNextQuestion: ® Next Question [C)
Touch Up Inside

Your storyboard file is complete. The view objects have been created and configured and all the
necessary connections have been made to the controller object. Let’s move on to creating and
connecting your model objects.

21

Chapter 1 A Simple iOS Application

Creating the Model Layer

View objects make up the UI, so developers typically create, configure, and connect view objects using
Interface Builder. The parts of the model layer, on the other hand, are typically set up in code.

In the project navigator, select ViewController.swift. Add the following code that declares two
arrays of strings and an integer.

class ViewController: UIViewController {
@IBOutlet var questionLabel: UILabel!
@IBOutlet var answerlLabel: UILabel!

let questions: [String] = [
"What is 7+77?",
"What is the capital of Vermont?",
"What is cognac made from?"

1

let answers: [String] = [
"14",
"Montpelier",
"Grapes"

1

var currentQuestionIndex: Int = 0

i

The arrays are ordered lists containing questions and answers. The integer will keep track of what
question the user is on.

Notice that the arrays are declared using the let keyword, whereas the integer is declared using the
var keyword. A constant is denoted with the let keyword; its value cannot change. The questions
and answers arrays are constants. The questions and answers in this quiz will not change and, in fact,
cannot be changed from their initial values.

A variable, on the other hand, is denoted by the var keyword; its value is allowed to change. You made
the currentQuestionIndex property a variable because its value must be able to change as the user
cycles through the questions and answers.

22

Implementing action methods

Implementing action methods

Now that you have questions and answers, you can finish implementing the action methods. In
ViewController.swift, update showNextQuestion(_:) and showAnswer(_:).

@IBAction func showNextQuestion(_ sender: UIButton) {
currentQuestionIndex += 1
if currentQuestionIndex == questions.count {
currentQuestionIndex = 0

}

let question: String = questions[currentQuestionIndex]
questionLabel.text = question
answerlLabel. text = "??2?"

}
@IBAction func showAnswer(_ sender: UIButton) {

let answer: String = answers[currentQuestionIndex]
answerlLabel.text = answer

Loading the first question

Just after the application is launched, you will want to load the first question from the array and use

it to replace the ??? placeholder in the questionLabel label. A good way to do this is by overriding
the viewDidLoad () method of ViewController. (“Override” means that you are providing a custom
implementation for a method.) Add the method to ViewController.swift.

class ViewController: UIViewController {
override func viewDidLoad() {

super.viewDidLoad()
questionLabel.text = questions[currentQuestionIndex]

b

All the code for your application is now complete!

23

Chapter 1 A Simple iOS Application

Building the Finished Application

Build and run the application on the iPhone 7 simulator, as you did earlier.

If building turns up any errors, you can view them in the issue navigator by selecting the & tab in the
navigator area (Figure 1.26).

Figure 1.26 Issue navigator with example errors and warnings

B2 A o = o 3

ECHINENEIM Runtime
v .{At' Quiz 3 issues 0
¥ 3p ViewController.swift
© Use of undeclared type 'string’

> @ Left side of mutating operator isn't
mutable: ‘currentQuestionindex' is
a 'let' constant

» @ Cannot assign to property:
‘currentQuestionindex' is a 'let'
constant

Click on any error or warning in the issue navigator to be taken to the file and the line of code where
the issue occurred. Find and fix any problems (i.e., code typos!) by comparing your code with the
code in this chapter. Then try running the application again. Repeat this process until your application
compiles.

After your application has compiled, it will launch in the iOS simulator. Play around with the Quiz
application. You should be able to tap the Next Question button and see a new question in the top label;
tapping Show Answer should show the right answer. If your application is not working as expected,
double-check your connections in Main.storyboard.

You have built a working iOS app! Take a moment to bask in the glory.

OK, enough basking. Your app works, but it needs some spit and polish.

24

Application Icons

Application Icons

While running Quiz, select Hardware = Home from the simulator’s menu. You will see that Quiz’s
icon is a boring, default tile. Let’s give Quiz a better icon.

An application icon is a simple image that represents the application on the iOS Home screen.
Different devices require different-sized icons, some of which are shown in Table 1.1.

Table 1.1 Application icon sizes by device

Device Application icon sizes
5.5-inch iPhone 180x180 pixels (@3x)
4.7-inch and 4.0-inch iPhone |120x120 pixels (@2x)
7.9-inch and 9.7-inch iPad 152x152 pixels (@2x)
12.9-inch iPad 167x167 pixels (@2x)

We have prepared an icon image file (size 120x120) for the Quiz application. You can download
this icon (along with resources for other chapters) from www.bignerdranch.com/solutions/
i0SProgramming6ed.zip. Unzip i0SProgramming6ed.zip and find the Quiz-120.png file in the
0-Resources/Project App Icons directory of the unzipped folder.

You are going to add this icon to your application bundle as a resource. In general, there are two kinds
of files in an application: code and resources. Code (like ViewController.swift) is used to create
the application itself. Resources are things like images and sounds that are used by the application at
runtime.

25

http://www.bignerdranch.com/solutions/iOSProgramming6ed.zip
http://www.bignerdranch.com/solutions/iOSProgramming6ed.zip

Chapter 1 A Simple iOS Application

In the project navigator, find Assets.xcassets. Select this file to open it and then select Applcon from
the resource list on the lefthand side (Figure 1.27).

Figure 1.27 Showing the Asset Catalog

e0e » /\ Quiz) i@ iPhone 7 Quiz: Ready | Today at 2:02 PM = © <o OaO
BR QA o =00 8 8L 1 Quiz) [Quiz) [Assets.xcassets) | Applcon
v @ Quiz i Applcon Applcon App Icon Set
v [Quiz
S AppDelegate.swift
3. ViewController.swift
Main.storyboard
Assets.xcassets. , 5 3 2
2x 3x 2x 3x 2x 3x
LaunchScreen.storyboard
nfo.plist iPhone Notification iPhone iPhone Spotlight
’ i0S 7-10 Spotlight - i0S 5,6 i0S 7-10
» [QuizTests 20pt Settings - i0S 5-10 40pt
»> [QuizUITests 29pt
» [Products
2x 3x
iPhone App
i0S 7-10
60pt
1% 2x 1% 2x 1% 2x
iPad Notifications iPad Settings iPad Spotlight
i0S 7-10 i0S 5-10 i0S 7-10
20pt 29pt 40pt
1x 2x 2x
iPad App iPad Pro App
108 7-10 i0S 9-10
76pt 83.5pt
+|® OH|| + — |OFilte Show Slicing

This panel is the Asset Catalog, where you can manage all of the images that your application will
need.

26

Application Icons

Drag the Quiz-120.png file from Finder onto the 2x slot of the iPhone App section (Figure 1.28). This
will copy the file into your project’s directory on the filesystem and add a reference to that file in the

Asset Catalog. (You can Control-click on a file in the Asset Catalog and select the option to Show in
Finder to confirm this.)

Figure 1.28 Adding the app icon to the Asset Catalog

BS < Qouiz Quiz) [0 Assets.xcassets) Applcon

i} Applcon

Applcon App Icon Set

2x 3x 2x 3x 2x 3x
iPhone Notification iPhone iPhone Spotlight
i0s 7-10 Spotlight - i0S 5,6 i0s 7-10
20pt Settings - i0S 5-10 40pt
29pt
Quiz-120.png
2% 3x
iPhone App

i0s 7-10
60pt

Build and run the application again. Switch to the simulator’s Home screen either by clicking

Hardware — Home, as you did before, or by using the keyboard shortcut Command-Shift-H. You
should see the new icon.

(If you do not see the icon, delete the application and then build and run again to redeploy it. To do
this, the easiest option is to reset the simulator by clicking Simulator = Reset Content and Settings....

This will remove all applications and reset the simulator to its default settings. You should see the app
icon the next time you run the application.)

27

Chapter 1 A Simple iOS Application

Launch Screen

Another item you should set for the project is the launch image, which appears while an application

is loading. The launch image has a specific role in iOS: It conveys to the user that the application

is indeed launching and depicts the UI that the user will interact with once the application loads.
Therefore, a good launch image is a content-less screenshot of the application. For example, the Clock
application’s launch image shows the four tabs along the bottom, all in the unselected state. Once the
application loads, the correct tab is selected and the content becomes visible. (Keep in mind that the
launch image is replaced after the application has launched; it does not become the background image
of the application.)

An easy way to accomplish this is to allow Xcode to generate the possible launch screen images for
you using a launch screen file.

Open the project settings by clicking on the top-level Quiz in the project navigator. Under App Icons
and Launch Images, choose Main.storyboard from the Launch Screen File dropdown (Figure 1.29).
Launch images will now be generated from Main.storyboard.

Figure 1.29 Setting the launch screen file

B < B Quiz
D General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT '
g Quiz ¥ App Icons and Launch Images
TARGETS
App Icons Source = Applcon ﬂ
Quiz
D QuizTests Launch Images Source = Use Asset Catalog...
[QuizUITests Launch Screen File |Main.storyboard [V]

It is difficult to see the results of this change, because the launch image is typically shown for only a
short time. However, it is a good practice to set the launch image even though its role is so brief.

Congratulations! You have written your first application and even added some details to make it
polished. You will return to Quiz later in the book. The next chapter covers some basics of Swift to
prepare you for more coding.

28

The Swift Language

Swift is a new language that Apple introduced in 2014. It replaces Objective-C as the recommended
development language for iOS and Mac. In this chapter, you are going to focus on the basics of Swift.
You will not learn everything, but you will learn enough to get started. Then, as you continue through
the book, you will learn more Swift while you learn iOS development.

Swift maintains the expressiveness of Objective-C while introducing a syntax that is safer, succinct,
and readable. It emphasizes type safety and adds advanced features such as optionals, generics, and
sophisticated structures and enumerations. Most importantly, Swift allows the use of these new features
while relying on the same tested, elegant i0OS frameworks that developers have built upon for years.

If you know Objective-C, then the challenge is recasting what you know. It may seem awkward at first,
but we have come to love Swift at Big Nerd Ranch and believe you will, too.

If you do not think you will be comfortable picking up Swift at the same time as iOS development,
you may want to start with Swift Programming: The Big Nerd Ranch Guide or Apple’s Swift tutorials,
which you can find at developer.apple.com/swift. But if you have some programming experience
and are willing to learn “on the job,” you can start your Swift education here and now.

29

http://developer.apple.com/swift

Chapter 2 The Swift Language

Types in Swift

Swift types can be arranged into three basic groups: structures, classes, and enumerations (Figure 2.1).
All three can have:

* properties — values associated with a type

* initializers — code that initializes an instance of a type

* instance methods — functions specific to a type that can be called on an instance of that type
* class or static methods — functions specific to a type that can be called on the type itself

Figure 2.1 Swift building blocks

Structures Enumerations Classes

struct MyStruct { enum MyEnum { class MyClass: SuperClass {
// properties // properties // properties
// initializers // initializers // initializers
// methods // methods // methods

} } }

Swift’s structures (or “structs”) and enumerations (or “enums”) are significantly more powerful than in
most languages. In addition to supporting properties, initializers, and methods, they can also conform
to protocols and can be extended.

Swift’s implementation of typically “primitive” types such as numbers and Boolean values may
surprise you: They are all structures. In fact, all of these Swift types are structures:

Numbers: Int, Float, Double

Boolean: Bool

Text: String, Character

Collections: Array<Element>, Dictionary<Key:Hashable,Value>, Set<Element:Hashable>

This means that standard types have properties, initializers, and methods of their own. They can also
conform to protocols and be extended.

Finally, a key feature of Swift is optionals. An optional allows you to store either a value of a particular
type or no value at all. You will learn more about optionals and their role in Swift later in this chapter.

30

Using Standard Types

Using Standard Types

In this section, you are going to experiment with standard types in an Xcode playground. A playground
lets you write code and see the results without the overhead of manually running an application and

checking the output.

In Xcode, select File = New — Playground.... You can accept the default name for this file; you will
only be here briefly. Make sure the platform is iOS (Figure 2.2).

Figure 2.2 Configuring a playground

Choose options for your new file:

Name MyPlayground

Platform: iOS | T]

Previous | IS

Cancel

Click Next and save this file in a convenient place.

31

Chapter 2 The Swift Language

When the file opens, notice that the playground is divided into two sections (Figure 2.3). The larger
white area to the left is the editor where you write code. The gray column on the right is the sidebar.
The playground compiles and executes your code after every line and shows the results in the sidebar.

Figure 2.3 A playground

® MyPlayground.playground
BE MyPlayground.playground
//: Playground — noun: a place where people can play

import UIKit

var str = "Hello, playground" "Hello, playground"

In the example code, the var keyword denotes a variable, so the value of str can be changed from its
initial value. Type in the code below to change the value of str, and you will see the results appear in
the sidebar to the right.

var str = "Hello, playground" "Hello, playground"
str = "Hello, Swift" "Hello, Swift"

(Notice that we are showing sidebar results to the right of the code for the benefit of readers who are
not actively doing the exercise.)

The let keyword denotes a constant value, which cannot be changed. In your Swift code, you should
use let unless you expect the value will need to change. Add a constant to the mix:

var str = "Hello, playground" "Hello, playground"
str = "Hello, Swift" "Hello, Swift"
let constStr = str "Hello, Swift"

Because constStr is a constant, attempting to change its value will cause an error.

var str = "Hello, playground" "Hello, playground"
str = "Hello, Swift" "Hello, Swift"
let constStr = str "Hello, Swift"

constStr = "Hello, world"

An error appears, indicated by the red symbol to the left of the offending line. Click the symbol to get
more information about the error. In this case, the error reads Cannot assign to value: 'constStr'
is a 'let' constant.

An error in the playground code will prevent you from seeing any further results in the sidebar, so you
usually want to address it right away. Remove the line that attempts to change the value of constStr.

var str = "Hello, playground" "Hello, playground"
str = "Hello, Swift" "Hello, Swift"
let constStr = str "Hello, Swift"

32

Inferring types

Inferring types

At this point, you may have noticed that neither the constStr constant nor the str variable has a
specified type. This does not mean they are untyped! Instead, the compiler infers their types from the
initial values. This is called type inference.

You can find out what type was inferred using Xcode’s Quick Help. Option-click on constStr in the
playground to see the Quick Help information for this constant, shown in Figure 2.4.

Figure 2.4 constStris of type String

var str = "Hello, playground"
str = "Hello, Swift"
let constStr = str

let constStr: String

MyPlayground.playground

Option-clicking to reveal Quick Help will work for any symbol.

Specifying types

If your constant or variable has an initial value, you can rely on type inference. If a constant or variable
does not have an initial value or if you want to ensure that it is a certain type, you can specify the type
in the declaration.

Add more variables with specified types:

var str = "Hello, playground" "Hello, playground"
str = "Hello, Swift" "Hello, Swift"
let constStr = str "Hello, Swift"

var nextYear: Int
var bodyTemp: Float
var hasPet: Bool

Note that the sidebar does not report any results because these variables do not yet have values.

Let’s go over these new types and how they are used.

Number and Boolean types

The most common type for integers is Int. There are additional integer types based on word size and
signedness, but Apple recommends using Int unless you really have a reason to use something else.

For floating-point numbers, Swift provides three types with different levels of precision: Float for
32-bit numbers, Double for 64-bit numbers, and Float80 for 80-bit numbers.

A Boolean value is expressed in Swift using the type Bool. A Bool’s value is either true or false.

33

Chapter 2 The Swift Language

Collection types
The Swift standard library offers three collections: arrays, dictionaries, and sets.

An array is an ordered collection of elements. The array type is written as Array<T>, where T is the
type of element that the array will contain. Arrays can contain elements of any type: a standard type, a
structure, or a class.

Add a variable for an array of integers:

var hasPet: Bool
var arrayOfInts: Array<Int>

Arrays are strongly typed. Once you declare an array as containing elements of, say, Int, you cannot
add a String to it.

There is a shorthand syntax for declaring arrays: You can simply use square brackets around the type
that the array will contain. Update the declaration of array0fInts to use the shorthand:

var hasPet: Bool

var arrayOfInts: [Int]

A dictionary is an unordered collection of key-value pairs. The values can be of any type, including
structures and classes. The keys can be of any type as well, but they must be unique. Specifically,

the keys must be hashable, which allows the dictionary to guarantee that the keys are unique and to
access the value for a given key more efficiently. Basic Swift types such as Int, Float, Character, and
String are all hashable.

Like Swift arrays, Swift dictionaries are strongly typed and can only contain keys and values of the
declared type. For example, you might have a dictionary that stores capital cities by country. The keys
for this dictionary would be the country names, and the values would be the city names. Both keys and
values would be strings, and you would not be able to add a key or value of any other type.

Add a variable for such a dictionary:

var array0fInts: [Int]
var dictionaryOfCapitalsByCountry: Dictionary<String,String>

There is a shorthand syntax for declaring dictionaries, too. Update dictionaryOfCapitalsByCountry
to use the shorthand:
var arrayOfInts: [Int]

var dictionaryOfCapitalsByCountry: [String:String]

A set is similar to an array in that it contains a number of elements of a certain type. However, sets
are unordered, and the members must be unique as well as hashable. The unorderedness of sets makes
them faster when you simply need to determine whether something is a member of a set. Add a
variable for a set:

var winningLotteryNumbers: Set<Int>

Unlike arrays and dictionaries, sets do not have a shorthand syntax.

34

Literals and subscripting

Literals and subscripting

Standard types can be assigned literal values, or literals. For example, str is assigned the value of a
string literal. A string literal is formed with double quotes. Contrast the literal value assigned to str
with the nonliteral value assigned to constStr:

var str = "Hello, playground" "Hello, playground"
str = "Hello, Swift" "Hello, Swift"
let constStr = str "Hello, Swift"

Add two number literals to your playground:

let number = 42 42
let fmStation = 91.1 91.1

Arrays and dictionaries can be assigned literal values as well. The syntax for creating literal arrays and
dictionaries resembles the shorthand syntax for specifying these types.

let countingUp = ["one", "two"] ["one", "two"]
let nameByParkingSpace = [13: "Alice", 27: "Bob"] [13: "Alice", 27: "Bob"]

Swift also provides subscripting as shorthand for accessing arrays. To retrieve an element in an array,
you provide the element’s index in square brackets after the array name.

let countingUp = ["one", "two"] ["one", "two"l]
let secondElement = countingUp[1] "two"

Notice that index 1 retrieves the second element; an array’s index always starts at 0.

When subscripting an array, be sure that you are using a valid index. Attempting to access an
out-of-bounds index results in a trap. A trap is a runtime error that stops the program before it gets into
an unknown state.

Subscripting also works with dictionaries — more on that later in this chapter.

35

Chapter 2 The Swift Language

Initializers

So far, you have initialized your constants and variables using literal values. In doing so, you created
instances of a specific type. An instance is a particular embodiment of a type. Historically, this term
has been only used with classes, but in Swift it is used to describe structures and enumerations, too. For
example, the constant secondElement holds an instance of String.

Another way of creating instances is by using an initializer on the type. Initializers are responsible

for preparing the contents of a new instance of a type. When an initializer is finished, the instance is
ready for action. To create a new instance using an initializer, you use the type name followed by a pair
of parentheses and, if required, arguments. This signature — the combination of type and arguments —
corresponds to a specific initializer.

Some standard types have initializers that return empty literals when no arguments are supplied. Add
an empty string, an empty array, and an empty set to your playground.

let emptyString = String() n
let emptyArrayOfInts [Int]() 0 elements
let emptySetOfFloats = Set<Float>() 0 elements

Other types have default values:

let defaultNumber = Int() 0
let defaultBool = Bool() false

Types can have multiple initializers. For example, String has an initializer that accepts an Int and
creates a string based on that value.

let number = 42 42
let meaningOfLife = String(number) "qM

To create a set, you can use the Set initializer that accepts an array literal:
let availableRooms = Set([205, 411, 412]) {412, 205, 411}

Float has several initializers. The parameter-less initializer returns an instance of Float with the
default value. There is also an initializer that accepts a floating-point literal.

let defaultFloat = Float() 0.0
let floatFromLiteral = Float(3.14) 3.14

If you use type inference for a floating-point literal, the type defaults to Double. Create the following
constant with a floating-point literal:

let easyPi = 3.14 3.14

Use the Float initializer that accepts a Double to create a Float from this Double:

let easyPi = 3.14 3.14
let floatFromDouble = Float(easyPi) 3.14

You can achieve the same result by specifying the type in the declaration.

let easyPi = 3.14 3.14
let floatFromDouble = Float(easyPi) 3.14
let floatingPi: Float = 3.14 3.14

36

Properties

Properties

A property is a value associated with an instance of a type. For example, String has the property
isEmpty, which is a Bool that tells you whether the string is empty. Array<T> has the property count,
which is the number of elements in the array as an Int. Access these properties in your playground:

let countingUp = ["one", "two"l] ["one", "two"l]
let secondElement = countingUp[1] "two"
countingUp.count 2

let emptyString = String()
emptyString.isEmpty true

Instance methods

An instance method is a function that is specific to a particular type and can be called on an instance of
that type. Try out the append(_:) instance method from Array<T>. You will first need to change your
countingUp array from a constant to a variable.

var countingUp = ["one", "two"] ["one", "two"]

let secondElement = countingUp[1] "two"

countingUp.count

countingUp.append("three") ["one", "two", "three"]

The append(_:) method accepts an element of the array’s type and adds it to the end of the array. We
will discuss methods, including naming, in Chapter 3.

37

Chapter 2 The Swift Language

Optionals
Swift types can be optional, which is indicated by appending ? to a type name.

var anOptionalFloat: Float?
var anOptionalArray0fStrings: [String]?
var anOptionalArray0fOptionalStrings: [String?]?

An optional lets you express the possibility that a variable may not store a value at all. The value of an
optional will either be an instance of the specified type or nil.

Throughout this book, you will have many chances to use optionals. What follows is an example to get
you familiar with the syntax so that you can focus on the use of the optionals later.

Imagine a group of instrument readings:

var readingl: Float
var reading2: Float
var reading3: Float

Sometimes, an instrument might malfunction and not report a reading. You do not want this
malfunction showing up as, say, 0.0. You want it to be something completely different that tells you to
check your instrument or take some other action.

You can do this by declaring the readings as optionals. Add these declarations to your playground.

var readingl: Float? nil
var reading2: Float? nil
var reading3: Float? nil

As an optional float, each reading can contain either a Float or nil. If not given an initial value, then
the value defaults to nil.

You can assign values to an optional just like any other variable. Assign floating-point literals to the
readings:

readingl = 9.8 9.8
reading2 = 9.2 9.2
reading3 = 9.7 9.7

However, you cannot use these optional floats like non-optional floats — even if they have been
assigned Float values. Before you can read the value of an optional variable, you must address the
possibility of its value being nil. This is called unwrapping the optional.

You are going to try out two ways of unwrapping an optional variable: optional binding and forced
unwrapping. You will implement forced unwrapping first. This is not because it is the better option — in
fact, it is the less safe one. But implementing forced unwrapping first will let you see the dangers and
understand why optional binding is typically better.

To forcibly unwrap an optional, you append a ! to its name. First, try averaging the readings as if they
were non-optional variables:

readingl = 9.8 9.8
reading2 = 9.2 9.2
reading3 = 9.7 9.7
let avgReading = (readingl + reading2 + reading3) / 3

38

Optionals

This results in an error because optionals require unwrapping. Forcibly unwrap the readings to fix the
error:

tet—ovgReading—=—(readingl—+—reading2—+—reading3 3
let avgReading = (readingl! + reading2! + reading3!) / 3 9.566667

Everything looks fine, and you see the correct average in the sidebar. But a danger lurks in your code.
When you forcibly unwrap an optional, you tell the compiler that you are sure that the optional will
not be nil and can be treated as if it were a normal Float. But what if you are wrong? To find out,
comment out the assignment of reading3, which will return it to its default value, nil.

readingl

9.8 9.8
reading2 = 9.2 9.2

readings—=—9-7
// reading3 = 9.7

You now have an error. Xcode may have opened its debug area at the bottom of the playground with
information about the error. If it did not, select View — Debug Area = Show Debug Area. The error
reads:

fatal error: unexpectedly found nil while unwrapping an Optional value

If you forcibly unwrap an optional and that optional turns out to be nil, it will cause a trap, stopping
your application.

A safer way to unwrap an optional is optional binding. Optional binding works within a conditional
if-let statement: You assign the optional to a temporary constant of the corresponding non-optional
type. If your optional has a value, then the assignment is valid and you proceed using the non-optional
constant. If the optional is nil, then you can handle that case with an else clause.

Change your code to use an if-let statement that tests for valid values in all three readings.

1 Reads E fimal el ine3H) 3
if let rl = readingl,

let r2 = reading2,
let r3 = reading3 {
let avgReading = (rl + r2 + r3) / 3
} else {
let errorString = "Instrument reported a reading that was nil."

}

reading3 is currently nil, so its assignment to r3 fails, and the sidebar shows the error string.

To see the other case in action, restore the line that assigns a value to reading3. Now that all three
readings have values, all three assignments are valid, and the sidebar updates to show the average of
the three readings.

39

Chapter 2 The Swift Language

Subscripting dictionaries

Recall that subscripting an array beyond its bounds causes a trap. Dictionaries are different. The result
of subscripting a dictionary is an optional:

let nameByParkingSpace = [13: "Alice", 27: "Bob"] [13: "Alice", 27: "Bob"]
let spacel3Assignee: String? = nameByParkingSpace[13] "Alice"
let spaced2Assignee: String? = nameByParkingSpace[42] nil

If the key is not in the dictionary, the result will be nil. As with other optionals, it is common to use
if-let when subscripting a dictionary:

if let spacel3Assignee = nameByParkingSpace[13] {
print("Key 13 is assigned in the dictionary!")
}

Loops and String Interpolation

Swift has all the control flow statements that you may be familiar with from other languages: if-else,
while, for, for-in, repeat-while, and switch. Even if they are familiar, however, there may be some
differences from what you are accustomed to. The key difference between these statements in Swift
and in C-like languages is that while enclosing parentheses are not necessary on these statements’
expressions, Swift does require braces on clauses. Additionally, the expressions for if and while-like
statements must evaluate to a Bool.

Swift does not have the traditional C-style for loop that you might be accustomed to. Instead, you can
accomplish the same thing a little more cleanly using Swift’s Range type and the for-in statement:

let range = 0..<countingUp.count
for i in range {
let string = countingUp[il
// Use 'string'
}

The most direct route would be to enumerate the items in the array themselves:

for string in countingUp {
// Use 'string'
}

What if you wanted the index of each item in the array? Swift’s enumerated() function returns a
sequence of integers and values from its argument:

for (i, string) in countingUp.enumerated() {
// (@, "one"), (1, "two")
¥

What are those parentheses, you ask? The enumerated() function returns a sequence of tuples. A tuple
is an ordered grouping of values similar to an array, except each member may have a distinct type. In
this example the tuple is of type (Int, String). We will not spend much time on tuples in this book;
they are not used in iOS APIs because Objective-C does not support them. However, they can be useful
in your Swift code.

40

Loops and String Interpolation

Another application of tuples is in enumerating the contents of a dictionary:
let nameByParkingSpace = [13: "Alice", 27: "Bob"]

for (space, name) in nameByParkingSpace {
let permit = "Space \(space): \(name)"
}

Did you notice that curious markup in the string literal? That is Swift’s string interpolation.
Expressions enclosed between \ (and) are evaluated and inserted into the string at runtime. In this
example you are using local variables, but any valid Swift expression, such as a method call, can be
used.

To see the values of the permit variable for each iteration of the loop, first click on the circular Show
Result indicator at the far right end of the results sidebar for the line let permit = "Space \(space):
\ (name)". You will see the current value of permit under the code. Control-click on the result and
select Value History (Figure 2.5). This can be very useful for visualizing what is happening in your
playground code’s loops.

Figure 2.5 Using the Value History to see the results of string interpolation

Show Result

for (space, name) in nameByParkingSpace {
let permit = "Space \(space): \(name)" (2 times)

Space 27: Bob
Space 13: Alice

Latest Value
v Value History

Show All Values

41

Chapter 2 The Swift Language

Enumerations and the Switch Statement
An enumeration is a type with a discrete set of values. Define an enum describing pies:

enum PieType {
case apple
case cherry
case pecan

}

let favoritePie = PieType.apple
Swift has a powerful switch statement that, among other things, is great for matching on enum values:

let name: String
switch favoritePie {
case .apple:

name = "Apple"
case .cherry:

name = "Cherry"
case .pecan:
name = "Pecan"

}

The cases for a switch statement must be exhaustive: Each possible value of the switch expression must
be accounted for, whether explicitly or via a default: case. Unlike in C, Swift switch cases do not fall
through — only the code for the case that is matched is executed. (If you need the fall-through behavior
of C, you can explicitly request it using the fallthrough keyword.)

Switch statements can match on many types, even ranges:

let macOSVersion: Int = ...
switch macOSVersion {

case 0...8:

print("A big cat")
case 9:

print("Mavericks")
case 10:

print("Yosemite")
case 11:

print("El Capitan")
case 12:

print("Sierra")
default:

print("Greetings, people of the future! What's new in 10.\(macOSVersion)?")
¥

For more on the switch statement and its pattern matching capabilities, see the Control Flow section in
Apple’s The Swift Programming Language guide. (More on that in just a moment.)

42

Enumerations and raw values

Enumerations and raw values

Swift enums can have raw values associated with their cases:

enum PieType: Int {
case apple = 0
case cherry
case pecan

b

With the type specified, you can ask an instance of PieType for its rawValue and then initialize the
enum type with that value. This returns an optional, since the raw value may not correspond with an
actual case of the enum, so it is a great candidate for optional binding.

let pieRawValue = PieType.pecan.rawValue
// pieRawValue is an Int with a value of 2

if let pieType = PieType(rawValue: pieRawValue) {
// Got a valid 'pieType'!
}

The raw value for an enum is often an Int, but it can be any integer or floating-point number type as
well as the String and Character types.

When the raw value is an integer type, the values automatically increment if no explicit value is given.
For PieType, only the apple case is given an explicit value. The values for cherry and pecan are
automatically assigned a rawValue of 1 and 2, respectively.

There is more to enumerations. Each case of an enumeration can have associated values. You will learn
more about associated values in Chapter 20.

43

Chapter 2 The Swift Language

Exploring Apple’s Swift Documentation

To explore Apple’s documentation on Swift, start at developer.apple.com/swift. Here are two
particular resources to look for. We suggest bookmarking them and visiting them when you want to
review a particular concept or dig a little deeper.

The Swift Programming Language This guide describes many features of Swift. It starts with the
basics and includes example code and lots of detail. It also
contains the language reference and formal grammar of Swift.

Swift Standard Library Reference The standard library reference lays out the details of Swift
types, protocols, and global (or free) functions.

Your homework is to browse through the Types section of the Swift Standard Library Reference and
the sections of The Swift Programming Language guide on The Basics, Strings and Characters, and
Collection Types. Solidify what you learned in this chapter and become familiar with the information
these resources offer. If you know where to find the details when you need them, then you will feel less
pressure to memorize them — letting you focus on iOS development instead.

44

http://developer.apple.com/swift

Views and the View Hierarchy

Over the next five chapters, you are going to build an application named WorldTrotter. When it is
complete, this app will convert values between degrees Fahrenheit and degrees Celsius. In this chapter,
you will learn about views and the view hierarchy through creating WorldTrotter’s UI. At the end of
this chapter, your app will look like Figure 3.1.

Figure 3.1 WorldTrotter

eecee T 9:41 AM 100% (.

212

degrees Fahrenheit
is really

100

degrees Celsius

Let’s start with a little bit of the theory behind views and the view hierarchy.

45

Chapter 3 Views and the View Hierarchy

View Basics

Recall from Chapter 1 that views are objects that are visible to the user, like buttons, text fields, and
sliders. View objects make up an application’s UL A view:

* is an instance of UIView or one of its subclasses

* knows how to draw itself

¢ can handle events, like touches

* exists within a hierarchy of views whose root is the application’s window

Let’s look at the view hierarchy in greater detail.

The View Hierarchy

Every application has a single instance of UIWindow that serves as the container for all the views in the
application. UIWindow is a subclass of UIView, so the window is itself a view. The window is created
when the application launches. Once the window is created, other views can be added to it.

When a view is added to the window, it is said to be a subview of the window. Views that are subviews
of the window can also have subviews, and the result is a hierarchy of view objects with the window at

its root (Figure 3.2).

Figure 3.2 An example view hierarchy and the interface that it creates

= _’,enm.wikipedia.org L
[and preceding 1730. 1728 ie krfown as the
Hardy-Ramanujar Aumber after a famous

| anecadte of the British mathematician G. H.
Hardy regarding a visit to the hospital to see
the Indian mathematician Srinivasa

Ramanujan. In Hardy's words: (&)%)

subviews

UlSearchBar

— =i — = - | remember once going to see
UlWindow >l < »| WKWebView < him when he was il at
frame subviews ~ | & subviews ~ |2 Putney. | had ridden in taxi
= = cab number 1729 and
remarked that the number
— seemed to me rather a dull
c one, and that | hoped it was
UlToolbar — »|S not an unfavorable omen.
subviews g "No," he replied, *it is a very
= R interesting number; it is the

46

~«_ smallest number expressible

N as the sum of two cubes in
=~ two difterent ways."

“Thedwo diffrent yuays‘a?e«he\se:

X > hm Do

The View Hierarchy

Once the view hierarchy is created, it will be drawn to the screen. This process can be broken into two
steps:

* Each view in the hierarchy, including the window, draws itself. It renders itself to its layer, which
you can think of as a bitmap image. (The layer is an instance of CALayer.)

» The layers of all the views are composited together on the screen.
Figure 3.3 depicts another example view hierarchy and the two drawing steps.

Figure 3.3 Views render themselves and then are composited together

UlWindow layer
frame

subviews

12:10PM

UlLabel

frame
text ="1,729"

layer

UlButton

frame
title ="C"

layer

[mainIn]

VAN

UlButton layer -
frame > YL

title = "+/-"

'R e O ____-—.-"':: i

UlButton layer B e R

frame »
title = "="

For WorldTrotter, you are going to create an interface composed of different views. There will be four
instances of UILabel and one instance of UITextField that will allow the user to enter a temperature in
Fahrenheit. Let’s get started.

47

Chapter 3 Views and the View Hierarchy

Creating a New Project

In Xcode, select File = New — Project... (or use the keyboard shortcut Command-Shift-N). Under the
iOS section at the top, choose the Single View Application template under Application and click Next.

Enter WorldTrotter for the product name. Make sure that Swift is selected from the Language dropdown
and that Universal is selected from the Devices dropdown. Also make sure the Use Core Data box is
unchecked (Figure 3.4). Click Next and then Create on the following screen.

Figure 3.4 Configuring WorldTrotter

48

Choose options for your new project:

Product Name:

Team:

Organization Name:
Organization Identifier:
Bundle Identifier:

Language:

Devices:

Cancel

WorldTrotter
None [T
Big Nerd Ranch

com.bignerdranch

com.bignerdranch.WorldTrotter

Swift B
Universal [T

Use Core Data
Include Unit Tests
Include Ul Tests

Previous

Views and Frames

Views and Frames

When you initialize a view programmatically, you use its init(frame:) designated initializer. This
method takes one argument, a CGRect, that will become the view’s frame, a property on UIView.

var frame: CGRect

A view’s frame specifies the view’s size and its position relative to its superview. Because a view’s size
is always specified by its frame, a view is always a rectangle.

A CGRect contains the members origin and size. The origin is a structure of type CGPoint and
contains two CGFloat properties: x and y. The size is a structure of type C6Size and has two CGFloat
properties: width and height (Figure 3.5).

Figure 3.5 CGRect

(0,0) -
- >
1
1
12
'Q
el
<
1
1
L
Fommm e - |1® T
origin.x \J !
1
(origin.x, origin.y) '
1
i
1
'n
N
1@
(=0
1D
I@'
=3
E-—c-
1
)
1
1
)
1
i
R Sttt T 4
size.width \J
v (origin.x + size.width, origin.y + size.height)

When the application is launched, the view for the initial view controller is added to the root-

level window. This view controller is represented by the ViewController class defined in
ViewController.swift. We will discuss what a view controller is in Chapter 5, but for now, it is
sufficient to know that a view controller has a view and that the view associated with the main view
controller for the application is added as a subview of the window.

49

Chapter 3 Views and the View Hierarchy

Before you create the views for WorldTrotter, you are going to add some practice views
programmatically to explore views and their properties and see how the interfaces for applications are
created.

Open ViewController.swift and delete any methods that the template created. Your file should look
like this:

import UIKit
class ViewController: UIViewController {

i

(UIKit, which you also saw in Chapter 1, is a framework. A framework is a collection of related classes
and resources. The UIKit framework defines many of the Ul elements that your users see, as well as
other 10S-specific classes. You will be using a few different frameworks as you go through this book.)

Right after the view controller’s view is loaded into memory, its viewDidLoad () method is called. This
method gives you an opportunity to customize the view hierarchy, so it is a great place to add your
practice views.

In ViewController.swift, override viewDidLoad (). Create a CGRect that will be the frame of a
UIView. Next, create an instance of UIView and set its backgroundColor property to blue. Finally, add
the UIView as a subview of the view controller’s view to make it part of the view hierarchy. (Much of
this will not look familiar. That is fine. We will explain more after you enter the code.)

class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad ()

let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
let firstView = UIView(frame: firstFrame)
firstView.backgroundColor = UIColor.blue
view.addSubview(firstView)

}

To create a CGRect, you use its initializer and pass in the values for origin.x, origin.y, size.width,
and size.height.

To set the backgroundColor, you use the UIColor class property blue. This is a computed property
that initializes an instance of UIColor that is configured to be blue. There are a number of UIColor
class properties for common colors, such as green, black, and clear.

50

Views and Frames

Build and run the application (Command-R). You will see a blue rectangle that is the instance of
UIView. Because the origin of the UIView’s frame is (160, 240), the rectangle’s top-left corner is 160
points to the right and 240 points down from the top-left corner of its superview. The view stretches

100 points to the right and 150 points down from its origin, in accordance with its frame’s size
(Figure 3.6).

Figure 3.6 WorldTrotter with one UIView

Carrier & 12:08 PM -
1
1
1
I 9
1@
13
1<
P
N
FN
I o
1
1
I
1
| (160, 240)
1
origin.x = 160

biay-azis

T
I
I
I
I
I
I
I
I
I
I
I

oSt

(260, 390)

size.width = 100

Note that these values are in points, not pixels. If the values were in pixels, then they would not be
consistent across displays of different resolutions (i.e., Retina versus non-Retina). A point is a relative
unit of a measure; it will be a different number of pixels depending on how many pixels are in the

display. Sizes, positions, lines, and curves are always described in points to allow for differences in
display resolution.

51

Chapter 3 Views and the View Hierarchy

Figure 3.7 represents the view hierarchy that you have created.

Figure 3.7 Current view hierarchy

UlWindow
.V
superview

A

UlView

ViewController view
superview

\ 4

UlView

Blue view

Every instance of UIView has a superview property. When you add a view as a subview of another
view, the inverse relationship is automatically established. In this case, the UIView’s superview is the
UIWindow.

Let’s experiment with the view hierarchy. First, in ViewController.swift, create another instance of
UIview with a different frame and background color.

override func viewDidLoad() {
super.viewDidlLoad()

let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
let firstView = UIView(frame: firstFrame)
firstView.backgroundColor = UIColor.blue
view.addSubview(firstView)

let secondFrame = CGRect(x: 20, y: 30, width: 50, height: 50)
let secondView = UIView(frame: secondFrame)
secondView.backgroundColor = UIColor.green
view.addSubview(secondView)

52

Views and Frames

Build and run again. In addition to the blue rectangle, you will see a green square near the top-left
corner of the window. Figure 3.8 shows the updated view hierarchy.

Figure 3.8 Updated view hierarchy with two subviews as siblings

UlWindow
superview
\/
UlView
ViewController view
v v-..
superview superview
UlView UlView

Blue view Green view

Now you are going to adjust the view hierarchy so that one instance of UIView is a subview of the other

UIView instead of the view controller’s view. In ViewController.swift, add secondView as a subview
of firstView.

let secondView = UIView(frame: secondFrame)
secondView.backgroundColor = UIColor.green

firstView.addSubview(secondView)

53

Chapter 3 Views and the View Hierarchy

Your view hierarchy is now four levels deep, as shown in Figure 3.9.

Figure 3.9 One UIView as a subview of the other

UlWindow

superview
v
UlView
ViewController view
superview
v
UlView
Blue view
e 4
superview
\ 4
UlView
Green view

54

Views and Frames

Build and run the application. Notice that secondView’s position on the screen has changed
(Figure 3.10). A view’s frame is relative to its superview, so the top-left corner of secondView is now
inset (20, 30) points from the top-left corner of firstView.

Figure 3.10 WorldTrotter with new hierarchy

Carrier & 12:15 PM L__J

(If the green instance of UIView looks smaller than it did previously, that is just an optical illusion. Its
size has not changed.)

Now that you have seen the basics of views and the view hierarchy, you can start working on the
interface for WorldTrotter. Instead of building up the interface programmatically, you will use Interface
Builder to visually lay out the interface, as you did in Chapter 1.

In ViewController.swift, start by removing your practice code.

55

Chapter 3 Views and the View Hierarchy

Now let’s add some views to the interface and set their frames.

Open Main.storyboard. At the bottom of the canvas, make sure the View as button is configured to
display an iPhone 7 device.

From the object library, drag five instances of UILabel onto the canvas. Set their text to match
Figure 3.11. As shown, space them out vertically on the top half of the interface and center them
horizontally.

Figure 3.11 Adding labels to the interface

®» =

212
degrees Fahrenheit
is really
100

degrees Celsius

Select the top label so you can see its frame in Interface Builder. Open its size inspector — the fifth tab
in the utilities area. (The keyboard shortcuts for the utilities tabs are Command-Option plus the tab
number. The size inspector is the fifth tab, so its keyboard shortcut is Command-Option-5.)

56

Customizing the labels

Under the View section, find Frame Rectangle. (If you do not see it, you might need to select it from
the Show pop-up menu.) The values shown are the view’s frame, and they dictate the position of the
view onscreen (Figure 3.12).

Figure 3.12 View frame values

View
Show Frame Rectangle [T
173 L 30 C
X Y
28 212
Width Height

Build and run the application on the iPhone 7 simulator. The interface on the simulator will look
identical to the interface that you laid out in Interface Builder.

Customizing the labels

Let’s make the interface look a little bit better by customizing the view properties.

InMain.storyboard, select the background view. Open the attributes inspector and give the app a new
background color: Find and click the Background dropdown and click Other.... Select the second tab
(the Color Sliders tab) and choose RGB Sliders from the dropdown. In the box near the bottom, enter a
Hex Color # of F5F4F1 (Figure 3.13). This will give the background a warm gray color.

Figure 3.13 Changing the background color
o ® Colors

' i _a-Rg T
& = i e

RGB Sliders < K3
Red
245
Green
244
Blue
241

Hex Color # | F5F4F1

Opacity
100%

Vd

57

Chapter 3 Views and the View Hierarchy

You can customize attributes common to selected views simultaneously. You will use this to give many
of the labels a larger font size as well as a burnt orange text color.

Select the top two and bottom two labels by Command-clicking them in the document outline. Make
sure the attributes inspector is open and update the text color: Under the Label section, find Color and
open the pop-up menu. Select the Color Sliders tab again and enter a Hex Color # of E15829.

Now let’s update the font. Select the 212 and 100 labels. Under the Label section in the attributes
inspector, find Font and click on the text icon next to the current font. In the popover that appears,
make the Size 70 (Figure 3.14). Select the remaining three labels. Open their Font pop-up and make the
Size 36.

Figure 3.14 Customizing the labels’ font

Label
Text Plain [T

Color d

~

Font System 70.0 TJ|+
Font System - System | T I8
Family |
Style Regular [T
Size 70 L
Done i
Autoshrink | Fixed Font Size E

Tighten Letter Spacing

Now that the font size is larger, the text no longer fits within the bounds of the label. You could resize
the labels manually, but there is an easier way.

Select the top label on the canvas. From Xcode’s Editor menu, select Size to Fit Content (Command-=).
This will resize the label to exactly fit its text contents. Repeat the process for the other four labels.
(You can select all four labels to resize them all at once.) Now move the labels so that they are again
nicely aligned vertically and centered horizontally (Figure 3.15).

58

Customizing the labels

Figure 3.15 Updating the label frames

212

degrees Fahrenheit
is really

100

degrees Celsius

Build and run the application on the iPhone 7 simulator. Now build and run the application on the
iPhone 7 Plus simulator. Notice that the labels are no longer centered — instead, they appear shifted
slightly to the left.

You have just seen two of the major problems with absolute frames. First, when the contents change
(like when you changed the font size), the frames do not automatically update. Second, the view does
not look equally good on different sizes of screens.

In general, you should not use absolute frames for your views. Instead, you should use Auto Layout to
flexibly compute the frames for you based on constraints that you specify for each view. For example,
what you really want for WorldTrotter is for the labels to remain the same distance from the top of the

screen and to remain horizontally centered within their superview. They should also update if the font

or text of the labels change. This is what you will accomplish in the next section.

59

Chapter 3 Views and the View Hierarchy

The Auto Layout System

Before you can fix the labels to have them lay out flexibly, you need to learn a little theory about the
Auto Layout system. As you saw in Chapter 1, absolute coordinates make your layout fragile because
they assume that you know the size of the screen ahead of time.

Using Auto Layout, you can describe the layout of your views in a relative way that enables their
frames to be determined at runtime so that the frames’ definitions can take into account the screen size
of the device that the application is running on.

The alignment rectangle and layout attributes

The Auto Layout system is based on the alignment rectangle. This rectangle is defined by several
layout attributes (Figure 3.16).

Figure 3.16 Layout attributes defining an alignment rectangle of a view

Width/Height ~ These values determine the alignment rectangle’s size.

Top/Bottom These values determine the spacing between the given edge of the alignment

Left/Right rectangle and the alignment rectangle of another view in the hierarchy.
CenterX These values determine the center point of the alignment rectangle.
CenterY

FirstBaseline These values are the same as the bottom attribute for most, but not all, views. For

LastBaseline example, UITextField defines its baselines as the bottom of the text it displays
rather than the bottom of the alignment rectangle. This keeps “descenders” (the parts
of letters like “g” and “p” that descend below the baseline) from being obscured by a
view right below the text field. For multiline text labels and text views, the first and
last baseline refer to the first and last line of text. In all other situations, the first and
last baseline are the same.

Leading These values are language-specific attributes. If the device is set to a language that

Trailing reads left to right (e.g., English), then the leading attribute is the same as the left
attribute and the trailing attribute is the same as the right attribute. If the language
reads right to left (e.g., Arabic), then the leading attribute is on the right and the
trailing attribute is on the left. Interface Builder automatically prefers leading and
trailing over left and right, and, in general, you should as well.

60

Constraints

By default, every view has an alignment rectangle, and every view hierarchy uses Auto Layout.

The alignment rectangle is very similar to the frame. In fact, these two rectangles are often the same.
Whereas the frame encompasses the entire view, the alignment rectangle only encompasses the content
that you wish to use for alignment purposes. Figure 3.17 shows an example where the frame and the
alignment rectangle are different.

Figure 3.17 Frame vs alignment rectangle

Frame Alignment rectangle

You cannot define a view’s alignment rectangle directly. You do not have enough information (like
screen size) to do that. Instead, you provide a set of constraints. Taken together, these constraints
enable the system to determine the layout attributes, and thus the alignment rectangle, for each view in
the view hierarchy.

Constraints

A constraint defines a specific relationship in a view hierarchy that can be used to determine a layout
attribute for one or more views. For example, you might add a constraint like, “The vertical space
between these two views should always be 8 points,” or, “These views must always have the same
width.” A constraint can also be used to give a view a fixed size, like, “This view’s height should
always be 44 points.”

You do not need a constraint for every layout attribute. Some values may come directly from a
constraint; others will be computed by the values of related layout attributes. For example, if a view’s
constraints set its left edge and its width, then the right edge is already determined (left edge + width
= right edge, always). As a general rule of thumb, you need at least two constraints per dimension
(horizontal and vertical).

If, after all of the constraints have been considered, there is still an ambiguous or missing value for

a layout attribute, then there will be errors and warnings from Auto Layout and your interface will
not look as you expect on all devices. Debugging these problems is important, and you will get some
practice later in this chapter.

How do you come up with constraints? Let’s see how, using the labels that you have laid out on the
canvas.

First, describe what you want the view to look like independent of screen size. For example, you might
say that you want the top label to be:

* 8 points from the top of the screen
* centered horizontally in its superview
* as wide and as tall as its text

61

Chapter 3 Views and the View Hierarchy

To turn this description into constraints in Interface Builder, it will help to understand how to find a
view’s nearest neighbor. The nearest neighbor is the closest sibling view in the specified direction
(Figure 3.18).

Figure 3.18 Nearest neighbor

T

Nearest top neighbor

Nearest right neighbor

If a view does not have any siblings in the specified direction, then the nearest neighbor is its
superview, also known as its container.

Now you can spell out the constraints for the label:

1. The label’s top edge should be 8 points away from its nearest neighbor (which is its container —
the view of the ViewController).

2. The label’s center should be the same as its superview’s center.
3. The label’s width should be equal to the width of its text rendered at its font size.
4. The label’s height should be equal to the height of its text rendered at its font size.

If you consider the first and fourth constraints, you can see that there is no need to explicitly constrain
the label’s bottom edge. It will be determined from the constraints on the label’s top edge and the
label’s height. Similarly, the second and third constraints together determine the label’s right and left
edges.

Now that you have a plan for the top label, you can add these constraints. Constraints can be added
using Interface Builder or in code. Apple recommends that you add constraints using Interface

Builder whenever possible, and that is what you will do here. However, if your views are created and
configured programmatically, then you can add constraints in code. In Chapter 6, you will practice that
approach.

62

Adding constraints in Interface Builder

Adding constraints in Interface Builder

Let’s get started constraining that top label.

Select the top label on the canvas. In the bottom-right corner of the canvas, find the Auto Layout

constraint menus (Figure 3.19).

Figure 3.19 Auto Layout constraint menus

View Controller

212

degrees Fahrenheit
is really

100

degrees Celsius

[View as: iPhone 7 (wC R) — 100% +

88 B worldTrotter WorldTrotter Main.storyboard Main.storyboard (Base)) No Selection

Auto Layout constraint menus

—

Click the to icon (the fourth from the left) to reveal the Add New Constraints menu. This menu shows

you the current size and position of the label.

At the top of the Add New Constraints menu are four values that describe the label’s current spacing
from its nearest neighbor on the canvas. For this label, you are only interested in the top value.

To turn this value into a constraint, click the top red strut separating the value from the square in the

middle. The strut will become a solid red line.

In the middle of the menu, find the label’s Width and Height. The values next to Width and Height
indicate the current canvas values. To constrain the label’s width and height to the current canvas
values, check the boxes next to Width and Height. The button at the bottom of the menu reads Add 3

Constraints. Click this button.

63

Chapter 3 Views and the View Hierarchy

At this point, you have not specified enough constraints to fully determine the alignment rectangle. The
red outline around the label indicates that its alignment rectangle is incompletely defined, and Interface
Builder will help you determine what the problem is.

In the top-right corner of Interface Builder, notice the yellow warning sign (Figure 3.20). Click on this
icon to reveal the issue: Horizontal position is ambiguous for "212".

Figure 3.20 Horizontal ambiguity

<A>

v /i Horizontal position is ambiguous for "212".

You have added two vertical constraints (a top edge constraint and a height constraint), but you
have only added one horizontal constraint (a width constraint). Having only one constraint makes
the horizontal position of the label ambiguous. You will fix this issue by adding a center alignment
constraint between the label and its superview.

With the top label still selected, click the & icon (the third icon from the left) to reveal the Align menu.
If you have multiple views selected, this menu will allow you to align attributes among the views.
Because you have only selected one label, the only options you are given are to align the view within
its container.

In the Align menu, check Horizontally in Container (do not click Add 1 Constraint yet). Once you add
this constraint, there will be enough constraints to fully determine the alignment rectangle. To ensure
that the frame of the label matches the constraints specified, open the Update Frames pop-up menu
from the Align menu and select Items of New Constraints. This will reposition the label to match the
constraints that have been added. Now click on Add 1 Constraint to add the centering constraint and
reposition the label.

The label’s constraints are all blue now that the alignment rectangle for the label is fully specified.
Additionally, the warning at the top-right corner of Interface Builder is now gone.

Build and run the application on the iPhone 7 simulator and the iPhone 7 Plus simulator. The top label
will remain centered in both simulators.

Intrinsic content size

Although the top label’s position is flexible, its size is not. This is because you have added explicit
width and height constraints to the label. If the text or font were to change, you would be in the same
position you were in earlier. The size of the frame is absolute, so the frame would not hug to the
content.

This is where the intrinsic content size of a view comes into play. You can think of the intrinsic content
size as the size that a view “wants” to be. For labels, this size is the size of the text rendered at the
given font. For images, this is the size of the image itself.

64

Intrinsic content size

A view’s intrinsic content size acts as implicit width and height constraints. If you do not specify
constraints that explicitly determine the width, the view will be its intrinsic width. The same goes for
the height.

With this knowledge, let the top label have a flexible size by removing the explicit width and height
constraints.

In Main.storyboard, select the width constraint on the label. You can do this by clicking on the
constraint on the canvas. Alternatively, in the document outline, you can click on the disclosure triangle
next to the 212 label, then disclose the list of constraints for the label (Figure 3.21).

Figure 3.21 Selecting the width constraint

88 < & worldTrotter Wor...tter) Mai...oard Mai...ase) Vie...cene Vie...roller View) L 212 Constraints width =111
v [5] view Controller Scene
v View Controller @ﬁ \5‘{
— Top L; t Guid:
p Layout Gui: e‘ -
_ Bottom Layout Guide T
v View
viL 212 g
v @Cons!raints
height = 84
B width = 111
y e
L degrees Fahrenheit .
degrees Hahrenheit
L 100
L degrees Celsius Q
> Constraints IS re!a | |y
{3 First Responder
|EJ Exit
Storyboard Entry Point 1 <) O
® Filter [0 View as: iPhone 7 (wC 1R) — 100% -+ (= = N |

Once you have selected the width constraint, press the Delete key. Do the same for the height
constraint.

Notice that the constraints for the label are still blue. Because the width and height are being inferred
from the label’s intrinsic content size, there are still enough constraints to determine the label’s
alignment rectangle.

65

Chapter 3 Views and the View Hierarchy

Misplaced views

As you have seen, blue constraints indicate that the alignment rectangle for a view is fully specified.
Orange constraints often indicate a misplaced view. This means that the frame for the view in Interface
Builder is different than the frame that Auto Layout has computed.

A misplaced view is very easy to fix. That is good, because it is also a very common issue that you will
encounter when working with Auto Layout.

Give your top label a misplaced view so that you can see how to resolve this issue. Resize the top label
on the canvas using the resize controls and look for the yellow warning in the top-right corner of the
canvas. Click on this warning icon to reveal the problem: Frame for "212" will be different at
run time (Figure 3.22).

Figure 3.22 Misplaced view warning

<A>

v Frame for "212" will be different at run time.

1]

212 -

degrees Fahrenheit

As the warning says, the frame at runtime will not be the same as the frame specified on the canvas. If
you look closely, you will see an orange dotted line that indicates what the runtime frame will be.

Build and run the application. Notice that the label is still centered despite the new frame that you
gave it in Interface Builder. This might seem great — you get the result that you want, after all. But the
disconnect between what you have specified in Interface Builder and the constraints computed by Auto
Layout will cause problems down the line as you continue to build your views. Let’s fix the misplaced
View.

Back in the storyboard, select the top label on the canvas. Click the X icon (the left-most icon) to
update the frame of the label to match the frame that the constraints will compute.

You will get very used to updating the frames of views as you work with Auto Layout. One word of
caution: If you try to update the frames for a view that does not have enough constraints, you will
almost certainly get unexpected results. If that happens, undo the change and inspect the constraints to
see what is missing.

At this point, the top label is in good shape. It has enough constraints to determine its alignment
rectangle, and the view is laying out the way you want.

Becoming proficient with Auto Layout takes a lot of experience, so in the next section you are going to
remove the constraints from the top label and then add constraints to all of the labels.

66

Adding more constraints

Adding more constraints

Let’s flesh out the constraints for the rest of the views. Before you do that, you will remove the existing
constraints from the top label.

Select the top label on the canvas. Open the Resolve Auto Layout Issues menu and select Clear
Constraints from the Selected Views section (Figure 3.23).

Figure 3.23 Clearing constraints

Update Constraint Constants

Reset to Suggested Constraints

Clear Constraints

Update Constraint Constants

Reset to Suggested Constraints
Clear Constraints

2. B3 & tof A

You are going to add the constraints to all of the views in two steps. First you will center the top label
horizontally within the superview. Then you will add constraints that pin the top of each label to its
nearest neighbor while aligning the centers of all of the labels.

Select the top label. Open the Align menu and choose Horizontally in Container with a constant of 0.
Make sure that Update Frames has None selected; remember that you do not want to update the frame
of a view that does not have enough constraints, and this one constraint will certainly not provide
enough information to compute the alignment rectangle. Go ahead and Add 1 Constraint.

Now select all five labels on the canvas. It can be very convenient to add constraints to multiple views
simultaneously. Open the Add New Constraints menu and make the following choices:

1. Select the top strut and make sure it has a constant of 8.
2. From the Align menu, choose Horizontal Centers.

3. From the Update Frames menu, choose ltems of New Constraints.

67

Chapter 3 Views and the View Hierarchy

Your menu should match Figure 3.24. Once it does, click Add 9 Constraints. This will add the
constraints to the views and update their frames to reflect the Auto Layout changes.

Figure 3.24 Adding more constraints with the Add New Constraints menu

Add New Constraints

8 v
1
-] .

Spacing to nearest neighbor

Constrain to margins
Width v
Height v

B equal widths
@ Equal Heights
@ Aspect Ratio

EB Align | Horizontal Centers

Update Frames | Items of New Constraints

Add 9 Constraints
2 B3 12 o A

Build and run the application on the iPhone 7 simulator. The views will be centered within the
interface. Now build and run the application on the iPhone 7 Plus simulator. Unlike earlier in the
chapter, all of the labels remain centered on the larger interface.

Auto Layout is a crucial technology for every i0OS developer. It helps you create flexible layouts that
work across a range of devices and interface sizes. It also takes a lot of practice to master. You will get
a lot of experience using Auto Layout as you work through this book.

Bronze Challenge: More Auto Layout Practice

Remove all of the constraints from the ViewController interface and then add them back in. Try to do
this without consulting the book.

68

4

Text Input and Delegation

WorldTrotter looks good, but so far it does not do anything. In this chapter, you are going to add an
instance of UITextField to WorldTrotter. The text field will allow the user to type in a temperature in

Fahrenheit that will then be converted to Celsius and displayed on the interface (Figure 4.1).

Figure 4.1 WorldTrotter with a UITextField

= 9:41 AM

5

degrees Fahrenheit
is really

36.7

degrees Celsius

100% Emm

1 2 3
& 2 S
“ 3 b

0 X

69

Chapter 4 Text Input and Delegation

Text Editing

The first thing you are going to do is add a UITextField to the interface and set up the constraints for
that text field. This text field will replace the top label in the interface that currently has the text “212.”

Open Main.storyboard. Select the top label and press the Delete key to remove this subview. The
constraints for all of the other labels will turn red because they were all directly or indirectly anchored
to that top label (Figure 4.2). That is OK; you will fix them shortly.

Figure 4.2 Ambiguous frames for the labels

® E

Open the object library and drag a Text Field to the top of the canvas where the label you deleted was
previously placed.

Now set up the constraints for this text field. With the text field selected, open the Align menu and align
the view Horizontally in Container with a constant of 0. Make sure that Update Frames is set to None
and then Add 1 Constraint.

70

Text Editing

Now open the Add New Constraints menu. Give the text field a top edge constraint of 8 points, a
bottom edge constraint of 8 points, and a width of 250 (Figure 4.3). Add these three constraints.

Figure 4.3 Text field Add New Constraints menu

Add New Constraints

8 A4

X

4
[

=

w

4

8 v
Spacing to nearest neighbor

Constrain to margins

Width 250 -
Height 30 v
8
@

@ Aspect Ratio
@ Leading Edges

Update Frames | None

Add 3 Constraints
B3 &= 1o af
Finally, select the text field and the label right below it. Open the Align menu, select Horizontal
Centers with a constant of 0, Update Frames for All Frames in Container, and finally Add 1 Constraint

(Figure 4.4).

Figure 4.4 Aligning the text field

Add New Alignment Constraints

@ Leading Edges 0 v
@ Trailing Edges 0 v
@ Top Edges 0 v
@ Bottom Edges 0 v
EB Horizontal Centers 0 v
@ Vertical Centers 0 v
@ Baselines 0 v
EB Horizontally in Container 0 v
@ Vertically in Container 0 v

Update Frames | All Frames in Container

Add 1 Constraint

2 B3 B 0 A

71

Chapter 4 Text Input and Delegation

Next, customize some of the text field properties. Open the attributes inspector for the text field and
make the following changes:

Set the text color (from the Color menu) to burnt orange.
Set the font size to System 70.
Set the Alignment to centered.

Set the placeholder text to be value. This is the text that will be displayed when the user has not
entered any text.

Set the Border Style to be none, which is the first element of the segmented control with the dotted
lines.

The attributes inspector for your text field should look like Figure 4.5.

Figure 4.5 Text field attributes inspector

72

D eE ¥ E

Text Field
Text Plain E
Color DT
Font System 70.0 TS
Alignment| = =l = = -

Placeholder value

Background w
Disabled]
()

Border Style (gt 1 ™

Text Editing

Because the text field’s font changed, the views on the canvas now are misplaced. Select the gray
background view, open the Resolve Auto Layout Issues menu, and select Update Frames from the
All Views in View Controller section. The text field and labels will be repositioned to match their
constraints (Figure 4.6).

Figure 4.6 Updated frames

degrees Fahrenheit
is really

100

degrees Celsius

Build and run the application. Tap on the text field and enter some text. If you do not see the keyboard,
click the simulator’s Hardware menu and select Keyboard = Toggle Software Keyboard or use the
keyboard shortcut Command-K. By default, the simulator treats your computer’s keyboard as a
Bluetooth keyboard connected to the simulator. This is not usually what you want. Instead, you want
the simulator to mimic an iOS device running without any accessories attached by using the onscreen
keyboard.

73

Chapter 4 Text Input and Delegation

Keyboard attributes

When a text field is tapped, the keyboard automatically slides up onto the screen. (You will see
why this happens later in this chapter.) The keyboard’s appearance is determined by a set of the
UITextField’s properties called the UITextInputTraits. One of these properties is the type of
keyboard that is displayed. For this application, you want to use the decimal pad.

In the attributes inspector for the text field, find the attribute named Keyboard Type and choose
Decimal Pad. In the same section, you can see some of the other text input traits that you can customize
for the keyboard. Change both Correction and Spell Checking to No (Figure 4.7).

Figure 4.7 Keyboard text input traits

Capitalization None
Correction No
Spell Checking No
Keyboard Type Decimal Pad

Appearance Default

(JoJof o of o

Return Key Default

Auto-enable Return Key
Secure Text Entry

Build and run the application. Tapping on the text field will now reveal the decimal pad.

Responding to text field changes

The next step of the project will be to update the Celsius label when text is typed into the text field.
You are going to need to write some code to do this. Specifically, this code will go into the view
controller subclass associated with this interface.

Currently, that corresponds with the ViewController class defined in ViewController.swift.
However, ViewController is not a very descriptive name for a view controller that manages the
conversion between Fahrenheit and Celsius. Having descriptive type names allows you to more easily
maintain your projects as they grow larger. You are going to delete this file and replace it with a more
descriptive class.

In the project navigator, find ViewController.swift and delete it. Then create a new file by selecting
File = New — File... (or press Command-N). With iOS selected at the top, choose Swift File under the
Source label and click Next.

74

Responding to text field changes

On the next pane, name this file ConversionViewController. Save the file in the WorldTrotter group
within the WorldTrotter project and make sure that the WorldTrotter target is checked, as shown in
Figure 4.8. Click Create, and Xcode will open ConversionViewController.swift in the editor.

Figure 4.8 Saving a Swift file

Save As: | ConversionViewGController A
Tags:
Where: WorldTrotter T}
Group WorldTrotter [T

Targets /\ WorldTrotter
WorldTrotterTests
WorldTrotterUITests

Cancel | CICL

In ConversionViewController.swift, import UIKit and define a new view controller named
ConversionViewController.

import UIKit
class ConversionViewController: UIViewController {
}

Now you need to associate the interface you created in Main.storyboard with this new view controller.

Open Main.storyboard and select the View Controller, either in the document outline or by clicking
the yellow circle above the interface.

Open the identity inspector, which is the third tab in the utilities view (Command-Option-3). At the
top, find the Custom Class section and change the Class to ConversionViewController (Figure 4.9).
(You will learn what all of this is doing in Chapter 5.)

Figure 4.9 Changing the custom class

@ 4 B O
Custom Class

Class ConversionViewContr... “

Module]

75

Chapter 4 Text Input and Delegation

You saw in Chapter 1 that a button can send events to a controller when the button is tapped. Text fields
are another control (both UIButton and UITextField are subclasses of UIControl) and can send an
event when the text changes.

To get this all working, you will need to create an outlet to the Celsius text label and create an action
for the text field to call when the text changes.

Open ConversionViewController.swift and define this outlet and action. For now, the label will be
updated with whatever text the user types into the text field.

class ConversionViewController: UIViewController {
@IBOutlet var celsiusLabel: UILabel!

@IBAction func fahrenheitFieldEditingChanged(_ textField: UITextField) {
celsiusLabel.text = textField.text
}

b

Open Main.storyboard to make these connections. The outlet will be connected just as you did in
Chapter 1. Control-drag from the Conversion View Controller to the Celsius label (the one that currently
says “100”) and connect it to the celsiusLabel.

Connecting the action will be a little different because you want the action to be triggered when the
editing changes.

Select the text field on the canvas and open its connections inspector from the utility pane (the right-
most tab, or Command-Option-6). The connections inspector allows you to make connections and see
what connections have already been made.

You are going to have changes to the text field trigger the action you defined in
ConversionViewController. In the connections inspector, locate the Sent Events section and

the Editing Changed event. Click and drag from the circle to the right of Editing Changed to the
Conversion View Controller and click the fahrenheitFieldEditingChanged: action in the pop-up menu
(Figure 4.10).

Figure 4.10 Connecting the editing changed event

Main.storyboard Main.st...rd (Base)) [=] Convers...r Scene Convers...ntroller View) F value ® T B O
Triggered Segues
fahrenheitFieldEditingChanged: —)
0 el =3 Outlets
delegate O
J; = \ Outlet Collections
o o
SerntSvents
Did End On Exit @)
o o Editing Changed)
Editing Did Begin (@)
Editing Did End (@)
o O Primary Action Triggered [e)
. Touch Cancel O
degrees Rahrenheit S
Touch Down Repeat (e)
Touch Drag Enter (@)
Q \ | I Touch Drag Exit @)
is really o
Touch Drag Outside @)
Touch Up Inside O
Touch Up Outside (@)
Value Changed O
Referencing Outlets
Referencing Outlet Collections
. Received Actions
degreeg Celsius

76

Responding to text field changes

Build and run the application. Tap the text field and type some numbers. The Celsius label will mimic
the text that is typed in. Now delete the text in the text field and notice how the label seems to go away.
A label with no text has an intrinsic content width and height of 0, so the labels below it move up. Let’s
fix this issue.

In ConversionViewController.swift, update fahrenheitFieldEditingChanged(_:) to display
“77?7” if the text field is empty.

@IBAction func fahrenheitFieldEditingChanged(_ textField: UITextField) {

if let text = textField.text, !text.isEmpty {
celsiusLabel.text = text

} else {
celsiusLabel.text = "?7?"

}

b

If the text field has text and that text is not empty, it will be set on the celsiusLabel. If either of those
conditions are not true, then the celsiusLabel will be given the string “??7”.

Build and run the application. Add some text, delete it, and confirm that the celsiusLabel is populated
with “?77” when the text field is empty.

77

Chapter 4 Text Input and Delegation

Dismissing the keyboard

Currently, there is no way to dismiss the keyboard. Let’s add that functionality. One common way
of doing this is by detecting when the user taps the Return key and using that action to dismiss the
keyboard; you will use this approach in Chapter 14. Because the decimal pad does not have a Return
key, you will allow the user to tap on the background view to trigger the dismissal.

When the text field is tapped, the method becomeFirstResponder () is called on it. This is the method
that, among other things, causes the keyboard to appear. To dismiss the keyboard, you call the method
resignFirstResponder() on the text field. You will learn more about these methods in Chapter 14.

For WorldTrotter, you will need an outlet to the text field and a method that is triggered when the
background view is tapped. This method will call resignFirstResponder () on the text field outlet.
Let’s take care of the code first.

Open ConversionViewController.swift and declare an outlet near the top to reference the text field.

@IBOutlet var celsiusLabel: UILabel!
@IBOutlet var textField: UITextField!

Now implement an action method that will dismiss the keyboard when called.

(In the code above, we included existing code so that you could position the new code correctly.

In the code below, we do not provide that context because the position of the new code is not
important so long as it is within the curly braces for the type being implemented — in this case, the
ConversionViewController class. When a code block includes all new code, we suggest that you
put it at the end of the type’s implementation, just inside the final closing brace. In Chapter 15, you
will see how to easily navigate within an implementation file when your files get longer and more
complex.)

@IBAction func dismissKeyboard(_ sender: UITapGestureRecognizer) {
textField.resignFirstResponder()
}

Two things are still needed: The textField outlet needs to be connected in the storyboard file, and you
need a way of triggering the dismissKeyboard(_:) method you added.

To take care of the first item, open Main.storyboard and select the Conversion View Controller.
Control-drag from the Conversion View Controller to the text field on the canvas and connect it to the
textField outlet.

Now you need a way of triggering the method you implemented. You will use a gesture recognizer to
accomplish this.

A gesture recognizer is a subclass of UIGestureRecognizer that detects a specific touch sequence and
calls an action on its target when that sequence is detected. There are gesture recognizers that detect
taps, swipes, long presses, and more. In this chapter, you will use a UITapGestureRecognizer to detect
when the user taps the background view. You will learn more about gesture recognizers in Chapter 19.

InMain.storyboard, find Tap Gesture Recognizer in the object library. Drag this object onto the
background view for the Conversion View Controller. You will see a reference to this gesture recognizer
in the scene dock, the row of icons above the canvas.

Control-drag from the gesture recognizer in the scene dock to the Conversion View Controller and
connect it to the dismissKeyboard: method (Figure 4.11).

78

Implementing the Temperature Conversion

Figure 4.11 Connecting the gesture recognizer action

Tap Gesture Recognizer

Action Segue
Show L}

Show Detail
Present Modally

Present As Popover
Custom
Outlets
delegate
Sent Actions .
dismissKeyboard: - F h h ‘t
Non-Adaptive Action Segue S a re n el
Push (deprecated)

Modal (deprecated)

Implementing the Temperature Conversion

With the basics of the interface wired up, let’s implement the conversion from Fahrenheit to Celsius.
You are going to store the current Fahrenheit value and compute the Celsius value whenever the text
field changes.

In ConversionViewController.swift, add a property for the Fahrenheit value. This will be an
optional measurement for temperature (a Measurement<UnitTemperature>?).

@IBOutlet var celsiuslLabel: UILabel!
var fahrenheitValue: Measurement<UnitTemperature>?

The reason this property is optional is because the user might not have typed in a number, similar to the
empty string issue you fixed earlier.

Now add a computed property for the Celsius value. This value will be computed based on the
Fahrenheit value.

var fahrenheitValue: Measurement<UnitTemperature>?

var celsiusValue: Measurement<UnitTemperature>? {
if let fahrenheitValue = fahrenheitValue {
return fahrenheitValue.converted(to: .celsius)
} else {
return nil
}

}

First you check to see whether there is a Fahrenheit value. If there is, you convert this value to the
equivalent value in Celsius. If there is no Fahrenheit value, then you cannot compute a Celsius value
and so you return nil.

Any time the Fahrenheit value changes, the Celsius label needs to be updated. Take care of that next.

79

Chapter 4 Text Input and Delegation

Add a method to ConversionViewController that updates the celsiusLabel.

func updateCelsiusLabel() {
if let celsiusValue = celsiusValue {
celsiusLabel.text = "\ (celsiusValue.value)"
} else {
celsiusLabel. text
}

npygn
}

You want this method to be called whenever the Fahrenheit value changes. To do this, you will use a
property observer, which is a chunk of code that gets called whenever a property’s value changes.

A property observer is declared using curly braces immediately after the property declaration. Inside
the braces, you declare your observer using either willSet or didSet, depending on whether you want
to be notified immediately before or immediately after the property value changes, respectively.

Add a property observer to fahrenheitValue that gets called after the property value changes.

var fahrenheitValue: Measurement<UnitTemperature>? {
didSet {
updateCelsiuslLabel()
}

}

(One small note: Property observers are not triggered when the property value is changed from within
an initializer.)

With that logic in place, you can now update the Fahrenheit value when the text field changes (which,
in turn, will trigger an update of the Celsius label).

In fahrenheitFieldEditingChanged(_:), delete your earlier nonconverting implementation and
instead update the Fahrenheit value.

@IBAction func fahrenheitFieldEditingChanged(_ textField: UITextField) {
celsiustabel—text—=—text
Fetse—f
1

if let text = textField.text, let value = Double(text) {
fahrenheitValue = Measurement(value: value, unit: .fahrenheit)
} else {
fahrenheitValue = nil
}

I

First you check whether the text field has some text. If so, you check to see whether that text can

be represented by a Double. For example, “3.14” can be represented by a Double, but both “three”

and “1.2.3” cannot. If both of those checks pass, then the Fahrenheit value is set to a Measurement
initialized with that Double value. If either of those checks fails, then the Fahrenheit value is set to nil.

Build and run the application. The conversion between Fahrenheit and Celsius works great — so long
as you enter a valid number. (It also shows more digits than you probably want it to, which you will
address in a moment.)

80

Number formatters

It would be nice if the celsiusLabel was updated when the application first launched instead of still
showing the value “100”.

Override viewDidLoad () to set the initial value, similar to what you did in Chapter 1.

override func viewDidLoad() {
super.viewDidLoad()

updateCelsiusLabel()
}

In the remainder of this chapter, you will update WorldTrotter to address two issues: You will format
the Celsius value to show a precision up to one fractional digit, and you will not allow the user to type
in more than one decimal separator.

There are a couple of other issues with your app, but you will focus on these two for now. One of the
other issues will be presented as a challenge at the end of this chapter. Let’s start with updating the
precision of the Celsius value.

Number formatters

You use a number formatter to customize the display of a number. There are other formatters for
formatting dates, energy, mass, length, measurements, and more.

Create a constant number formatter in ConversionViewController.swift.

let numberFormatter: NumberFormatter = {
let nf = NumberFormatter()
nf.numberStyle = .decimal
nf.minimumFractionDigits
nf.maximumFractionDigits
return nf

10

=0
=1

Here you are using a closure to instantiate the number formatter. You are creating a NumberFormatter
with the .decimal style and configuring it to display no more than one fractional digit. You will learn
more about this new syntax for declaring properties in Chapter 16.

Now modify updateCelsiusLabel() to use this formatter.

func updateCelsiusLabel() {
if let celsiusValue = celsiusValue {

celsiusLabel.text =
numberFormatter.string(from: NSNumber(value: celsiusValue.value))
} else {
celsiusLabel.text = "??2?"
¥

b

Build and run the application. Play around with Fahrenheit values to see the formatter at work. You
should never see more than one fractional digit on the Celsius label.

In the next section, you will update the application to accept a maximum of one decimal separator in
the text field. To do this, you will use a common iOS design pattern called delegation.

81

Chapter 4 Text Input and Delegation

Delegation

Delegation is an object-oriented approach to callbacks. A callback is a function that is supplied in
advance of an event and is called every time the event occurs. Some objects need to make a callback
for more than one event. For instance, the text field needs to “callback” when the user enters text as
well as when the user presses the Return key.

However, there is no built-in way for two (or more) callback functions to coordinate and share
information. This is the problem addressed by delegation — you supply a single delegate to receive all
of the event-related callbacks for a particular object. This delegate object can then store, manipulate,
act on, and relay the information from the callbacks as it sees fit.

When the user types into a text field, that text field will ask its delegate if it wants to accept

the changes that the user has made. For WorldTrotter, you want to deny that change if the user
attempts to enter a second decimal separator. The delegate for the text field will be the instance of
ConversionViewController.

Conforming to a protocol

The first step is enabling instances of the ConversionViewController class to perform the

role of UITextField delegate by declaring that ConversionViewController conforms to the
UITextFieldDelegate profocol. For every delegate role, there is a corresponding protocol that declares
the methods that an object can call on its delegate.

The UITextFieldDelegate protocol looks like this:

protocol UITextFieldDelegate: NSObjectProtocol {
optional func textFieldShouldBeginEditing(_ textField: UITextField) -> Bool
optional func textFieldDidBeginEditing(_ textField: UITextField)
optional func textFieldShouldEndEditing(_ textField: UITextField) —> Bool
optional func textFieldDidEndEditing(_ textField: UITextField)
optional func textField(_ textField: UITextField,
shouldChangeCharactersIn range: NSRange,
replacementString string: String) -> Bool
optional func textFieldShouldClear(_ textField: UITextField) —> Bool
optional func textFieldShouldReturn(_ textField: UITextField) —> Bool
}

This protocol, like all protocols, is declared with protocol followed by its name,
UITextFieldDelegate. The NSObjectProtocol after the colon refers to the NSObject protocol and
tells you that UITextFieldDelegate inherits all of the methods in the NSObject protocol. The methods
specific to UITextFieldDelegate are declared next.

You cannot create instances of a protocol; it is simply a list of methods and properties. Instead,
implementation is left to each type that conforms to the protocol.

In a class’s declaration, the protocols that the class conforms to are in a comma-delimited list
following the superclass (if there is one). In ConversionViewController.swift, declare that
ConversionViewController conforms to the UITextFieldDelegate protocol.

class ConversionViewController: UIViewController, UITextFieldDelegate {

Protocols used for delegation are called delegate protocols, and the naming convention for a delegate
protocol is the name of the delegating class plus the word Delegate. Not all protocols are delegate

82

Using a delegate

protocols, however, and you will see an example of a different kind of protocol in Chapter 16.
The protocols we have mentioned so far are part of the iOS SDK, but you can also write your own
protocols.

Using a delegate

Now that you have declared ConversionViewController as conforming to the UITextFieldDelegate
protocol, you can set the delegate property of the text field.

Open Main.storyboard and Control-drag from the text field to the Conversion View Controller.
Choose delegate from the popover to connect the delegate property of the text field to the
ConversionViewController.

Next, you are going to implement the UITextFieldDelegate method that you are interested in —
textField(_:shouldChangeCharactersIn:replacementString:). Because the text field calls this
method on its delegate, you must implement it in ConversionViewController.swift.

In ConversionViewController.swift, implement
textField(_:shouldChangeCharactersIn:replacementString:) to print the text field’s current text
as well as the replacement string. For now, just return true from this method.

func textField(_ textField: UITextField,
shouldChangeCharactersIn range: NSRange,
replacementString string: String) -> Bool {

print("Current text: \(textField.text)")
print("Replacement text: \(string)")

return true

}

Notice that Xcode was able to autocomplete this method because ConversionViewController
conforms to UITextFieldDelegate. It is a good idea to declare a protocol before implementing
methods from the protocol so that Xcode can offer this support.

83

Chapter 4 Text Input and Delegation

Build and run the application. Enter several digits in the text field and watch Xcode’s console
(Figure 4.12). It prints out the current text of the text field as well as the replacement string.

Figure 4.12 Printing to the console

o0) B A W.er) @@ iPhone7 Running WorldTrotter on iPhone 7

® <090 Show Debug Area
8 < & WworldTrotter WorldTrotter) 3 Ci ionVi troller.swift) [) textField(_:shouldChangeCl ing:) \¥/

/1
// Copyright e 2015 Big Nerd Ranch
1/

import UIKit
class ConversionViewController: UIViewController, UITextFieldDelegate {

@IBOutlet var celsiusLabel: UILabel!
@IBOutlet var textField: UITextField!

var fahrenheitValue: Measurement<UnitTemperature>? {

1
1
1
1 didset {

1 updateCelsiusLabel()
1

1

= =» [0 S v WorldTrotter

|Current text: Optional("")
|Replacement text:

Current text: Optional("3")
Replacement text: .

Current text: Optional("3.")
Replacement text: 1

Current text: Optional("3.1")
Replacement text: 4

«— Debug Area

N
b anoupus e juflj]] Show/Hide the Console

Consider this “current text” and “replacement text” information in light of your goal of preventing
multiple decimal separators. Logically, if the existing string has a decimal separator and the
replacement string has a decimal separator, the change should be rejected.

In ConversionViewController.swift, update
textField(_:shouldChangeCharactersIn:replacementString:) to use this logic.

func textField(_ textField: UITextField,
shouldChangeCharactersIn range: NSRange,
replacementString string: String) —> Bool {

rettei—true

let existingTextHasDecimalSeparator = textField.text?.range(of: ".")
let replacementTextHasDecimalSeparator = string.range(of: ".")

if existingTextHasDecimalSeparator != nil,
replacementTextHasDecimalSeparator != nil {
return false

} else {
return true

}

I

Build and run the application. Attempt to enter multiple decimal separators; the application will reject
the second decimal separator that you enter.

84

More on protocols

More on protocols

In the UITextFieldDelegate protocol, there are two kinds of methods: methods that handle
information updates and methods that handle requests for input. For example, the text field’s delegate
implements the textFieldDidBeginEditing(_:) method if it wants to know when the user taps on the
text field.

On the other hand, textField(_:shouldChangeCharactersIn:replacementString:) is a request for
input. A text field calls this method on its delegate to ask whether the replacement string should be
accepted or rejected. The method returns a Bool, which is the delegate’s answer.

Methods declared in a protocol can be required or optional. By default, protocol methods are required,
meaning that a class conforming to the protocol must have an implementation of those methods. If

a protocol has optional methods, these are preceded by the directive optional. Looking back at the
UITextFieldDelegate protocol, you can see that all of its methods are optional. This is typically true
of delegate protocols.

Bronze Challenge: Disallow Alphabetic Characters

Currently, the user can enter alphabetic characters either by using a Bluetooth keyboard or by pasting
copied text into the text field. Fix this issue. Hint: You will want to use the NSCharacterSet class.

85

Cpt

BIG NERD RANCH
CODING BOOTCAMPS

Big Nerd Ranch bootcamps cover a lot of ground in just days. With
our retreat-style training, we’ll subject you to the most intensive app
development course you can imagine, and when you finish, you’ll be
part of an elite corps: the few, the proud, the nerds.

Our distraction-free training gives you the opportunity to master new
skills in an intensive environment—no meetings, no phone calls, just
learning.

Big Nerd Ranch’s training was unlike any other

0 class I've had. I learned skills that make me
exceptionally more valuable, giving me a leg up on
the competition. Since my first Big Nerd Ranch class,
I've written software used in The White House, held
positions at AT&T and Disney—and ultimately landed
at Apple.

—Josh Paul, Alumnus

We offer classes in i0S, Android, Front-End Web, Back-End Web, macOS and
Design. Use code BNRGUIDE100 for $100 off a bootcamp of your choice.

www.bignerdranch.com

View Controllers

A view controller is an instance of a subclass of UIViewController. A view controller manages a view
hierarchy. It is responsible for creating view objects that make up the hierarchy and for handling events
associated with the view objects in its hierarchy.

So far, WorldTrotter has a single view controller, ConversionViewController. In this chapter, you will
update it to use multiple view controllers. The user will be able to switch between two view hierarchies
— one for viewing the ConversionViewController and another for displaying a map (Figure 5.1).

Figure 5.1 The two faces of WorldTrotter

eo0ee T 9:41 AM 100% secee T 9:41 AM 100% -
Yellowkn
is reall NORTH
o AMERICA
ouver Calgary 55
8 Winnipeg
%Seattl)
e Minneapolis oMontréal
© Toronto o
Chicago S
e o o .
Denver o
hncisco 3 St. Louis o v New York
R © Washington
Ph Atlanta
degrees Celsius . e e .
Ciudad Jusrez®
o o
Hermosillo Houston
Monterrey
o
Havana
o
Mexico,City®
Guatemala City
o
Car
o
.
ogots,
Quito
o
Legal A
0"}
(4] A
Convert ; ‘ pe

89

Chapter 5 View Controllers

The View of a View Controller

As subclasses of UIViewController, all view controllers inherit an important property:
var view: UIView!

This property points to a UIView instance that is the root of the view controller’s view hierarchy. When
the view of a view controller is added as a subview of the window, the view controller’s entire view
hierarchy is added, as shown in Figure 5.2.

Figure 5.2 Object diagram for WorldTrotter

UlWindow

subviews

rootViewController +

.

MapViewController MKMapView

\4

view

A view controller’s view is not created until it needs to appear on the screen. This optimization is
called lazy loading, and it can conserve memory and improve performance.

There are two ways that a view controller can create its view hierarchy:
* in Interface Builder, by using an interface file such as a storyboard
* programmatically, by overriding the UIViewController method loadView()

You saw the first approach in Chapter 3. First, you created a sample view hierarchy programmatically,
then you switched to Interface Builder to create the interface for ConversionViewController using a
storyboard file. You will continue to use Interface Builder in this chapter as you further explore view
controllers. In Chapter 6, you will get experience creating programmatic views using loadView().

90

Setting the Initial View Controller

Setting the Initial View Controller

Although a storyboard can have many view controllers, each storyboard file has exactly one initial
view controller. The initial view controller acts as an entry point into the storyboard. You are going to
add and configure another view controller to the canvas and set it to be the initial view controller for
the storyboard.

Open Main.storyboard. From the object library, drag a View Controller onto the canvas (Figure 5.3).
(To make space on the canvas, you can zoom out by Control-clicking on the background, using the
zoom controls at the bottom of the canvas, or using pinch gestures on your trackpad.)

Figure 5.3 Adding a view controller to the canvas

Conversion View Controller View Controller

degrees Fahrenheit
is really

100

degrees Celsius

91

Chapter 5 View Controllers

You want this view controller to display an MKMapView — a class designed to display a map — instead of
the existing white UIView.

Select the view of the View Controller — not the View Controller itself! — and press Delete to remove this
view from the canvas. Then drag a Map Kit View from the object library onto the view controller to set
it as the view for this view controller (Figure 5.4).

Figure 5.4 Adding a map view to the canvas

View Controller

Now select the View Controller and open its attributes inspector. Under the View Controller section,
check the box next to Is Initial View Controller (Figure 5.5). Did you notice that the gray arrow on the
canvas that was pointing at the Conversion View Controller is now pointing to the View Controller? The
arrow, as you have probably surmised, indicates the initial view controller. Another way to assign the
initial view controller is to drag that arrow from one view controller to another on the canvas.

Figure 5.5 Setting the initial view controller
View Controller

Title
Is Initial View Controller

92

Setting the Initial View Controller

There is a quirk that would cause problems if you were to build and run the app right now. (Try it,
if you like.) MKMapView is in a framework that is not currently being loaded into the application. A
framework is a shared library of code that includes associated resources such as interface files and
images. You briefly learned about frameworks in Chapter 3, and you have been using a couple of
frameworks already: UIKit and Foundation are both frameworks.

So far, you have been including frameworks in your app by using the import keyword, like so:
import UIKit

Now you need to import the MapKit framework so that the MKMapView will load. However, if you
import the MapKit framework using the import keyword without including any code that uses
that framework, the compiler will optimize it out — even though you are using a map view in your
storyboard.

Instead, you need to manually link the MapKit framework to the app.

With the project navigator open, click on the WorldTrotter project at the top of the list to open the
project settings. Find and open the General tab in the settings. Scroll down to the bottom and find
the section labeled Linked Frameworks and Libraries. Click on the + at the bottom and search for

MapKit.framework. Select this framework and click Add (Figure 5.6).

Figure 5.6 Adding the MapKit framework

B2 < Q WorldTrotter < >
E General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT)
> Identity

Q WorldTrotter
TARGETS P Signing
/A WorldTrotter
[| WorldTrotterTests > Deployment Info

"] WorldTrotterUITests
P App Icons and Launch Images

» Embedded Binaries

V Linked Frameworks and Libraries

58 MapKit.framework Required

+ - ®

Now you can build and run the application. Because you have changed the initial view controller, the
map shows up instead of the view of the ConversionViewController.

93

Chapter 5 View Controllers

As mentioned above, there can only be one initial view controller associated with a given storyboard.
You saw this earlier when you set the View Controller to be the initial view controller. At that point,
the Conversion View Controller was no longer the initial view controller for this storyboard. Let’s take
a look at how this requirement works with the root level UIWindow to add the initial view controller’s
view to the window hierarchy.

UIWindow has a rootViewController property. When a view controller is set as the window’s
rootViewController, that view controller’s view gets added to the window’s view hierarchy. When
this property is set, any existing subviews on the window are removed and view controller’s view gets
added to the window with the appropriate Auto Layout constraints.

Each application has one main interface, a reference to a storyboard. When the application launches,
the initial view controller for the main interface gets set as the rootViewController of the window.

The main interface for an application is set in the project settings. Still in the General tab of the project
settings, find the Deployment Info section. Here you will see the Main Interface setting (Figure 5.7).
This is set to Main, which corresponds to Main.storyboard.

Figure 5.7 An application’s main interface

V Deployment Info
Deployment Target a
Devices = Universal
Main Interface | Main a
Device Orientation Portrait
Upside Down
Landscape Left
Landscape Right
Status Bar Style Default
Hide status bar
Requires full screen

94

UlTabBarController

UlTabBarController

View controllers become more interesting when the user has a way to switch between them.
Throughout this book, you will learn a number of ways to present view controllers. In this
chapter, you will create a UITabBarController that will allow the user to swap between the
ConversionViewController and the UIViewController displaying the map.

UITabBarController keeps an array of view controllers. It also maintains a tab bar at the bottom of the
screen with a tab for each view controller in its array. Tapping on a tab results in the presentation of the
view of the view controller associated with that tab.

Open Main.storyboard and select the View Controller. From the Editor menu, choose Embed In — Tab
Bar Controller. This will add the View Controller to the view controllers array of the Tab Bar Controller.
You can see this represented by the Relationship arrow pointing from the Tab Bar Controller to the View
Controller (Figure 5.8). Additionally, Interface Builder knows to make the Tab Bar Controller the initial
view controller for the storyboard.

Figure 5.8 Tab bar controller with one view controller

Tab Bar Controller Item

Item

95

Chapter 5 View Controllers

A tab bar controller is not very useful with just one view controller. Add the Conversion View
Controller to the Tab Bar Controller’s view controllers array.

Control-drag from the Tab Bar Controller to the Conversion View Controller. From the Relationship
Segue section, choose view controllers (Figure 5.9).

Figure 5.9 Adding a view controller to the tab bar controller

Manual Segue
Show
Show Detail
Present Modally
Present As Popover

Custom
Relationship Segue
view controllers
Non-Adaptive Manual Segue
Push (deprecated)
Modal (deprecated)

Build and run the application. Tap on the two tabs at the bottom to switch between the two view
controllers. At the moment, the tabs just say Item, which is not very helpful. In the next section, you
will update the tab bar items to make the tabs more descriptive and obvious.

96

UlTabBarController

UITabBarController is itself a subclass of UIViewController. A UITabBarController’s viewis a
UIView with two subviews: the tab bar and the view of the selected view controller (Figure 5.10).

Figure 5.10 UITabBarController diagram

view

a1AM 100% m

View gets

swapped in here

/

/

view

eeee = Sa1AM

tabBar

UlTabBarController

/viewControIIersK

ConversionViewController

T00% -

degrees Fahrenheit
is really

??7?

degrees Celsius

MapViewController

view

vee = Sa1AM

97

Chapter 5 View Controllers

Tab bar items

Each tab on the tab bar can display a title and an image, and each view controller maintains a
tabBarItem property for this purpose. When a view controller is contained by a UITabBarController,
its tab bar item appears in the tab bar. Figure 5.11 shows an example of this relationship in iPhone’s
Phone application.

Figure 5.11 UITabBarItem example

----- AT&T = 2:13PM 7 % 38% W}

1)
__/
KeypadViewController —
— view — 4) (5
tabBarltem 77 ‘/—>
UlTabBarltem * 0) @
title
image ee °
[1 1)
[1 1]
Keypad o
AN 4
. n
\\\ 1
~ /

First, you need to add a few files to your project that will be the images for the tab bar items. In the
project navigator, open the Asset Catalog by opening Assets.xcassets.

An asset is a set of files from which a single file will be selected at runtime based on the user’s device
configuration (more on that at the end of this chapter). You are going to add a ConvertIcon asset and a
MapIcon asset, each with images at three different resolutions.

In the @ - Resources directory of the file that you downloaded earlier (www.bignerdranch.com/
solutions/i0SProgramming6ed.zip), find ConvertIcon.png, ConvertIcon@2x.png,
ConvertIcon@3x.png, MapIcon.png, MapIcon@2x.png, and MapIcon@3x.png. Drag these files into the
images set list on the left side of the Asset Catalog (Figure 5.12).

98

http://www.bignerdranch.com/solutions/iOSProgramming6ed.zip
http://www.bignerdranch.com/solutions/iOSProgramming6ed.zip

Tab bar items

Figure 5.12 Adding images to the Asset Catalog

88 < Q WorldTrotter WorldTrotter) [Assets.xcassets) | : | Convertlcon
Applcon Convertlicon Image Set
Il Converticon
B Maplcon
1x 2x 3x
Universal
Maplcon Image Set
%
o 2
1x 2x 3x
Universal
+ — | @®Filter Show Slicing

The tab bar item properties can be set either programmatically or in a storyboard. Because your data is
static, the storyboard will be the best place to set the tab bar item properties.

In Main.storyboard, locate the View Controller (it is now labeled Item). Notice that a tab bar with the
tab bar item in it was added to the interface because the view controller will be presented within a tab
bar controller. This is very useful when laying out your interface.

Select this tab bar item and open its attributes inspector. Under the Bar Item section, change the Title
to “Map” and choose Maplcon from the Image menu. You can also change the text of the tab bar
item by double-clicking on the text on the canvas. The tab bar will be updated to reflect these values
(Figure 5.13).

Figure 5.13 View Controller’s tab bar item

Map

Now find the Conversion View Controller and select its tab bar item. Set the Title to be “Convert” and
the Image to be Convertlcon.

Let’s also change the first tab to be the Convert View Controller. The order of the tabs is determined
by the order of the view controllers within the tab bar controller’s viewControllers array. You can
change the order in a storyboard by dragging the tabs at the bottom of the Tab Bar Controller.

Find the Tab Bar Controller on the canvas. Drag the Convert tab to be in the first position.

Build and run the application. Not only are the tab bar items at the bottom more descriptive, but the
ConvertViewController is now the first view controller that is displayed (Figure 5.14).

Figure 5.14 Tab bar items with labels and icons

Convert

99

Chapter 5 View Controllers

Loaded and Appearing Views

Now that you have two view controllers, the lazy loading of views mentioned earlier becomes more
important. When the application launches, the tab bar controller defaults to loading the view of the first
view controller in its array, which is the ConvertViewController. The MapViewController’s view is
not needed and will only be needed when (or if) the user taps the tab to see it.

You can test this behavior for yourself. When a view controller finishes loading its view,
viewDidLoad() is called, and you can override this method to make it print a message to the console,
allowing you to see that it was called.

You are going to add code to both view controllers. However, there is no code currently associated with
the view controller displaying the map because everything has been configured using the storyboard.
Now that you want to add code to that view controller, you are going to create a view controller
subclass and associate it with that interface.

Create a new Swift file (Command-N) and name it MapViewController. Open
MapViewController.swift and define a UIViewController subclass named MapViewController.

. E ot
import UIKit

class MapViewController: UIViewController {

}

Now open Main.storyboard and select the map’s view controller. Open its identity inspector and
change the Class to MapViewController.

Now that you have associated the MapViewController class with the view controller on the canvas,
you can add code to both ConversionViewController and MapViewController to print to the console
when their viewDidLoad () method is called.

In ConversionViewController.swift, update viewDidLoad () to print a statement to the console.

override func viewDidLoad() {
super.viewDidlLoad()

print("ConversionViewController loaded its view.")

updateCelsiusLabel()
}

In MapViewController.swift, override the same method.

override func viewDidLoad() {
super.viewDidLoad ()

print("MapViewController loaded its view.")
}

Build and run the application. The console reports that ConversionViewController loaded its view
right away. Tap MapViewController’s tab, and the console will report that its view is now loaded.
At this point, both views have been loaded, so switching between the tabs now will no longer trigger
viewDidLoad(). (Try it and see.)

100

Accessing subviews

Accessing subviews

Often, you will want to do some extra initialization or configuration of subviews defined in Interface
Builder before they appear to the user. So where can you access a subview? There are two main
options, depending on what you need to do. The first option is the viewDidLoad () method that you
overrode to spot lazy loading. This method is called after the view controller’s interface file is loaded,
at which point all of the view controller’s outlets will reference the appropriate objects. The second
option is another UIViewController method, viewWillAppear(_:). This method is called just before a
view controller’s view is added to the window.

Which should you choose? Override viewDidLoad () if the configuration only needs to be done once
during the run of the app. Override viewWillAppear(_:) if you need the configuration to be done each
time the view controller’s view appears onscreen.

Interacting with View Controllers and Their Views

Let’s look at some methods that are called during the lifecycle of a view controller and its view. Some
of these methods you have already seen, and some are new.

* init(coder:) is the initializer for UIViewController instances created from a storyboard.

When a view controller instance is created from a storyboard, its init(coder:) gets called once.
You will learn more about this method in Chapter 16.

* init(nibName:bundle:) is the designated initializer for UIViewController.

When a view controller instance is created without the use of a storyboard, its
init(nibName:bundle:) gets called once. Note that in some apps, you may end up creating
several instances of the same view controller class. This method will get called once on each view
controller as it is created.

* loadView() is overridden to create a view controller’s view programmatically.

* viewDidLoad() is overridden to configure views created by loading an interface file. This method
gets called after the view of a view controller is created.

* viewWillAppear(_:) is overridden to configure views created by loading an interface file.

This method and viewDidAppear(_:) get called every time your view controller is moved
onscreen. viewWillDisappear(_:) and viewDidDisappear(_:) get called every time your view
controller is moved offscreen.

Silver Challenge: Dark Mode

Whenever the ConversionViewController is viewed, update its background color based on the time
of day. In the evening, the background should be a dark color. Otherwise, the background should be a
light color. You will need to override viewWillAppear(_:) to accomplish this. (If that is not enough
excitement in your life, you can change the background color each time the view controller is viewed.)

101

Chapter 5 View Controllers

For the More Curious: Retina Display

With the release of iPhone 4, Apple introduced the Retina display for iPhone and iPod touch. The
Retina display has much higher resolution compared to earlier devices. Let’s look at what you should
do to make graphics look their best on both displays.

For vector graphics, you do not need to do anything; your code will render as crisply as the device
allows. However, if you draw using Core Graphics functions, these graphics will appear differently on
different devices. In Core Graphics (also called Quartz), lines, curves, text, etc. are described in terms
of points. On a non-Retina display, a point is 1x1 pixel. On most Retina displays, a point is 2x2 pixels
(Figure 5.15). The exceptions are the 5.5-inch iPhones, which have a higher-resolution Retina display
where a point is 3x3 pixels.

Figure 5.15 Rendering to different resolutions

A/

As described to As rendered to As rendered to
Core Graphics a non-Retina display a 2x Retina display
(vector graphics) (1 point = 1x1 pixel) (1 point = 2x2 pixels)

Given these differences, bitmap images (like JPEG or PNG files) will be unattractive if the image is not
tailored to the device’s screen type. Say your application includes a small image of 25x25 pixels. If this
image is displayed on a 2x Retina display, then the image must be stretched to cover an area of 50x50
pixels. At this point, the system does a type of averaging called anti-aliasing to keep the image from
looking jagged. The result is an image that is not jagged — but it is fuzzy (Figure 5.16).

Figure 5.16 Fuzziness from stretching an image

You could use a larger file instead, but the averaging would then cause problems in the other direction
when the image is shrunk for a non-Retina display. The only solution is to bundle two image files with
your application: one at a pixel resolution equal to the number of points on the screen for non-Retina
displays and one twice that size in pixels for Retina displays.

102

For the More Curious: Retina Display

Fortunately, you do not have to write any extra code to handle which image gets loaded on which
device. All you have to do is associate the different resolution images in the Asset Catalog with a
single asset. Then, when you use UIImage’s init(named:) initializer to load the image, this method
looks in the bundle and gets the appropriate file for the particular device.

103

Programmatic Views

In this chapter, you will update WorldTrotter to create the view for MapViewController
programmatically (Figure 6.1). In doing so, you will learn more about view controllers and how to set
up constraints and controls (such as UIButtons) programmatically.

Figure 6.1 WorldTrotter with programmatic views

eccee T 9:41 AM 100% eecce T 9:41 AM 100%
Standard Hybrid Satellite
Yellowknife
o

degrees Fahrenheit
is really AN T3

o
ouver Calgary
o nipeg

o
| .
Seattle Minneapolis OMon(real
® Toronto o
Q
L] L] °

Chicago
o
Denver Q
ey o St. Louis o New York
® Washington
Phoenix Atlanta
degrees Celsius ot WY pallss o
Ciudad Juarez®
o 4
Hermosillo SuSton
oMenterrey

Havana
O
Mexico,City®

Guatemala City,
(]

Bogota
9°t%

Quito
o

o

]

Convert Map

Currently, the view for MapViewController is defined in the storyboard. The first step, then, is to
remove this view from the storyboard so you can instead create it programmatically.

105

Chapter 6 Programmatic Views

In Main.storyboard, select the map view associated with Map View Controller and press Delete
(Figure 6.2).

Figure 6.2 Deleting the view

B8 < g WorldTrotter) WorldTrotter) Main.storyboard) Main.storyboard (Base) Map Scene) Map

» [E] Convert Scene

v Map -
* Map
) First Responder
Exit

» [Tab Bar Controller Scene

106

Creating a View Programmatically

Creating a View Programmatically

You learned in Chapter 5 that you create a view controller’s view programmatically by overriding the
UIViewController method loadView()

Open MapViewController.swift and override loadView() to create an instance of MKMapView and
set it as the view of the view controller. You will need a reference to the map view later on, so create a
property for it as well.

import UIKit
import MapKit

class MapViewController: UIViewController {
var mapView: MKMapView!
override func loadView() {
// Create a map view
mapView = MKMapView()
// Set it as *the* view of this view controller

view = mapView

}

override func viewDidLoad() {
super.viewDidLoad()

print("MapViewController loaded its view.")

b

When a view controller is created, its view property is nil. If a view controller is asked for its view and
its view is nil, then the loadView() method is called.

Build and run the application. Although the application looks the same, the map view is being created
programmatically instead of through Interface Builder.

107

Chapter 6 Programmatic Views

Programmatic Constraints

In Chapter 3, you learned about Auto Layout constraints and how to add them using Interface Builder.
In this section, you will learn how to add constraints to an interface programmatically.

Apple recommends that you create and constrain your views in Interface Builder whenever possible.
However, if your views are created in code, then you will need to constrain them programmatically.
The interface for MapViewController is created programmatically, so it is a great candidate for
programmatic constraints.

To learn about programmatic constraints, you are going to add a UISegmentedControl to
MapViewController’s interface. A segmented control allows the user to choose between a discrete set
of options, and you will use one to allow the user to switch between map types: standard, hybrid, and
satellite.

In MapViewController.swift, update loadView() to add a segmented control to the interface.

override func loadView() {
// Create a map view
mapView = MKMapView()

// Set it as *the* view of this view controller
view = mapView

let segmentedControl

= UISegmentedControl(items: ["Standard", "Hybrid", "Satellite"])
segmentedControl.backgroundColor

= UIColor.white.withAlphaComponent(0.5)
segmentedControl.selectedSegmentIndex = 0

segmentedControl.translatesAutoresizingMaskIntoConstraints = false
view.addSubview(segmentedControl)

i

(Note that due to page size restrictions we are showing some of these declarations split across two
lines. You should enter each declaration on a single line.)

The line of code regarding translating constraints has to do with an older system for scaling interfaces
— autoresizing masks. Before Auto Layout was introduced, iOS applications used autoresizing masks to
allow views to scale for different-sized screens at runtime.

Every view has an autoresizing mask. By default, iOS creates constraints that match the autoresizing
mask and adds them to the view. These translated constraints will often conflict with explicit
constraints in the layout and cause an unsatisfiable constraints problem. The fix is to turn off this
default translation by setting the property translatesAutoresizingMaskIntoConstraints to false.
(There is more about Auto Layout and autoresizing masks at the end of this chapter.)

108

Anchors

Anchors

When you work with Auto Layout programmatically, you will use anchors to create your constraints.
Anchors are properties on the view that correspond to attributes that you might want to constrain to
an anchor on another view. For example, you might constrain the leading anchor of one view to the
leading anchor of another view. This would have the effect of the two views’ leading edges being
aligned.

Let’s create some constraints to do the following.
* The top anchor of the segmented control should be equal to the top anchor of its superview.

» The leading anchor of the segmented control should be equal to the leading anchor of its
superview.

* The trailing anchor of the segmented control should be equal to the trailing anchor of its
superview.

In MapViewController.swift, create these constraints in LloadView().

let segmentedControl

= UISegmentedControl(items: ["Standard", "Hybrid", "Satellite"])
segmentedControl.backgroundColor

= UIColor.white.withAlphaComponent(0.5)
segmentedControl.selectedSegmentIndex = 0

segmentedControl.translatesAutoresizingMaskIntoConstraints = false
view.addSubview(segmentedControl)

let topConstraint

= segmentedControl.topAnchor.constraint(equalTo: view.topAnchor)
let leadingConstraint

= segmentedControl.leadingAnchor.constraint(equalTo: view.leadingAnchor)
let trailingConstraint

= segmentedControl.trailingAnchor.constraint(equalTo: view.trailingAnchor)

Xcode will alert you to a problem with each line you have entered. You will fix them in a moment.

Anchors have a method constraint(equalTo:) that will create a constraint between the two anchors.
There are a few other constraint creation methods on NSLayoutAnchor, including one that accepts a
constant as an argument:

func constraint(equalTo anchor: NSLayoutAnchor<AnchorType>,
constant c: CGFloat) —> NSLayoutConstraint

109

Chapter 6 Programmatic Views

Activating constraints

You now have three NSLayoutConstraint instances. However, these constraints will have no effect
on the layout until you explicitly activate them by setting their isActive properties to true. This will
resolve Xcode’s complaint.

In MapViewController.swift, activate the constraints at the end of loadView().

let topConstraint =

segmentedControl.topAnchor.constraint(equalTo: view.topAnchor)
let leadingConstraint =

segmentedControl. leadingAnchor.constraint(equalTo: view.leadingAnchor)
let trailingConstraint =

segmentedControl.trailingAnchor.constraint(equalTo: view.trailingAnchor)

topConstraint.isActive = true
leadingConstraint.isActive = true
trailingConstraint.isActive = true

Constraints need to be added to the most recent common ancestor for the views associated with the
constraint. Figure 6.3 shows a view hierarchy along with the common ancestor for two views.

Figure 6.3 Common ancestor
common ancestor

AN

iterﬁé of 6onstraint

If a constraint is related to just one view (such as when adding a width or height constraint to a view),
then that view is considered the common ancestor.

By setting the active property on a constraint to true, the constraint will work its way up the
hierarchy for the items to find the common ancestor to add the constraint to. It will then call the
method addConstraint(_:) on the appropriate view. Setting the active property is preferable to
calling addConstraint(_:) or removeConstraint(_:) yourself.

110

Layout guides

Build and run the application and switch to the MapViewController. The segmented control is now
pinned to the top, leading, and trailing edges of its superview (Figure 6.4).

Figure 6.4 Segmented control added to the screen

Standard 12:38 /M ‘ Satellite =

Yellowknife
o]

Although the constraints are doing the right thing, the interface does not look good. The segmented
control is underlapping the status bar, and it would look better if the segmented control was inset from
the leading and trailing edges of the screen. Let’s tackle the status bar issue first.

Layout guides

View controllers expose two layout guides to assist with layout content: the topLayoutGuide and

the bottomLayoutGuide. The layout guides indicate the extent to which the view controller’s view
contents will be visible. Using topLayoutGuide will allow your content to not underlap the status bar
or navigation bar at the top of the screen. (You will learn about navigation bars in Chapter 14.) Using
the bottomLayoutGuide will allow your content to not underlap the tab bar at the bottom of the screen.

The layout guides expose three anchors that you can use to add constraints: topAnchor, bottomAnchor,
and heightAnchor. Because you want the segmented control to be under the status bar, you will
constrain the bottom anchor of the top layout guide to the top anchor of the segmented control.

In MapViewController.swift, update the segmented control’s constraints in loadView(). Make the
segmented control be 8 points below the top layout guide.

tet—topConstraintm

let topConstraint =
segmentedControl.topAnchor.constraint(equalTo: topLayoutGuide.bottomAnchor,
constant: 8)
let leadingConstraint =
segmentedControl. leadingAnchor.constraint(equalTo: view.leadingAnchor)
let trailingConstraint =
segmentedControl.trailingAnchor.constraint(equalTo: view.trailingAnchor)

topConstraint.isActive = true

leadingConstraint.isActive = true
trailingConstraint.isActive = true

Build and run the application. The segmented control now appears below the status bar. By using the
layout guides instead of a hardcoded constant, the views will adapt based on the context they appear in.

111

Chapter 6 Programmatic Views

Now let’s update the segmented control so that it is inset from the leading and trailing edges of its
superview.

Margins

Although you could inset the segmented control using a constant on the constraint, it is much better to
use the margins of the view controller’s view.

Every view has a layoutMargins property that denotes the default spacing to use when laying out
content. This property is an instance of UIEdgeInsets, which you can think of as a type of frame.
When adding constraints, you will use the layoutMarginsGuide, which exposes anchors that are tied
to the edges of the layoutMargins.

The primary advantage of using the margins is that the margins can change depending on the device
type (iPad or iPhone) as well as the size of the device. Using the margins will give you content that
looks good on any device.

Update the segmented control’s leading and trailing constraints in loadView() to use the margins.

let topConstraint =
segmentedControl.topAnchor.constraint(equalTo: topLayoutGuide.bottomAnchor,
constant: 8)

Tetteadinac .

let margins = view.layoutMarginsGuide
let leadingConstraint =

segmentedControl.leadingAnchor.constraint(equalTo: margins.leadingAnchor)
let trailingConstraint =

segmentedControl.trailingAnchor.constraint(equalTo: margins.trailingAnchor)

topConstraint.isActive = true

leadingConstraint.isActive = true
trailingConstraint.isActive = true

Build and run the application again. The segmented control is now inset from the view’s margins
(Figure 6.5).

Figure 6.5 Segmented control with updated constraints

Carrier & 1:09 PM (-

Hybrid Satellite

Yellowknife
o

112

Explicit constraints

Explicit constraints

It is helpful to understand how these methods that you have used create constraints.
NSLayoutConstraint has the following initializer:

convenience init(item viewl: Any,
attribute attrl: NSLayoutAttribute,
relatedBy relation: NSLayoutRelation,
toIltem view2: Any?,
attribute attr2: NSLayoutAttribute,
multiplier: CGFloat,
constant c: CGFloat)

This initializer creates a single constraint using two layout attributes of two view objects. The
multiplier is the key to creating a constraint based on a ratio. The constant is a fixed number of points,
similar to what you used in your spacing constraints.

The layout attributes are defined as constants in the NSLayoutConstraint class:

* NSLayoutAttribute.left * NSLayoutAttribute.right

* NSLayoutAttribute.leading * NSLayoutAttribute.trailing

* NSLayoutAttribute.top * NSLayoutAttribute.bottom

* NSLayoutAttribute.width * NSLayoutAttribute.height

* NSLayoutAttribute.centerX * NSLayoutAttribute.centerY

* NSLayoutAttribute.firstBaseline * NSLayoutAttribute.lastBaseline

There are additional attributes that handle the margins associated with a view, such as
NSLayoutAttribute.leadingMargin

Let’s consider a hypothetical constraint. Say you wanted the width of the image view to be 1.5 times its
height. You could make that happen with the following code. (Do not type this hypothetical constraint
in your code! It will conflict with others you already have.)

let aspectConstraint = NSLayoutConstraint(item: imageView,
attribute: .width,
relatedBy: .equal,
toItem: imageView,
attribute: .height,
multiplier: 1.5,
constant: 0.0)

113

Chapter 6 Programmatic Views

To understand how this initializer works, think of this constraint as the equation shown in Figure 6.6.

Figure 6.6 NSLayoutConstraint equation

imageView.width = 1.5 * imageView.height + 0.0
A A 4 4

>

1
|

|

1
|
|
|
1
I

’ !
/

NSLayoutConstraint(item: imageView .
attribute: .width .-

relatedBy: .equal’
toItem: imageView-------- - y
attribute: .height % . N
multiplier: 1.5----"- . L
constant: 0.0)-----------mmo---eoooooooooooT -

1
1
|
1
1
|
1
1
|
|
|
1
I
|
I
I

You relate a layout attribute of one view to the layout attribute of another view using a multiplier and a

constant to define a single constraint.

Programmatic Controls
Now let’s update the segmented control to change the map type when the user taps on a segment.

A UISegmentedControl is a subclass of UIControl. You worked with another UIControl subclass in
Chapter 1, the UIButton class. Controls are responsible for calling methods on their target in response

to some event.
Control events are of type UIControlEvents. Here are a few of the common control events that you

will use:

UIControlEvents.touchDown A touch down on the control.

A touch down followed by a touch up while still within

UIControlEvents.touchUpInside
the bounds of the control.

UIControlEvents.valueChanged A touch that causes the value of the control to change.

UIControlEvents.editingChanged A touch that causes an editing change for a UITextField.

You used . touchUpInside for the UIButton in Chapter 1 (it is the default event when you Control-drag
to connect actions in Interface Builder), and you saw the .editingChanged event in Chapter 4. For the

segmented control, you will use the .valueChanged event.

114

Programmatic Controls

In MapViewController.swift, update loadView() to add a target-action pair to the segmented control
and associate it with the .valueChanged event.

override func loadView() {
// Create a map view
mapView = MKMapView()

// Set it as *the* view of this view controller
view = mapView

let segmentedControl

= UISegmentedControl(items: ["Standard", "Satellite", "Hybrid"]l)
segmentedControl.backgroundColor

= UIColor.white.withAlphaComponent(0.5)
segmentedControl.selectedSegmentIndex = @

segmentedControl.addTarget(self,
action: #selector(MapViewController.mapTypeChanged(_:)),
for: .valueChanged)

Next, implement the action method in MapViewController that the event will trigger. This method will
check which segment was selected and update the map accordingly.

func mapTypeChanged(_ segControl: UISegmentedControl) {
switch segControl.selectedSegmentIndex {
case 0:
mapView.mapType = .standard
case 1:
mapView.mapType
case 2:
mapView.mapType
default:
break
}

.hybrid

.satellite

}

Build and run the application. Change the selected segment and the map will update.

115

Chapter 6 Programmatic Views

Bronze Challenge: Another Tab

Create a new view controller and add it to the tab bar controller. This view controller should
display a WKWebView, which is a class used to display web content. The web view should display
www. bignerdranch. com for you to book your next vacation.

Silver Challenge: User’s Location

Add a button to the MapViewController that displays and zooms in on the user’s current location. You
will need to use delegation to accomplish this. Refer to the documentation for MKMapViewDelegate.

Gold Challenge: Dropping Pins

Map views can display pins, which are instances of MKPinAnnotationView. Add three pins to the map
view: one where you were born, one where you are now, and one at an interesting location you have
visited in the past. Add a button to the interface that allows the map to display the location of a pin.
Subsequent taps should simply cycle through the list of pins.

116

https://www.bignerdranch.com

For the More Curious: NSAutoresizingMaskLayoutConstraint

For the More Curious:
NSAutoresizingMaskLayoutConstraint

As we mentioned earlier, before Auto Layout iOS applications used another system for managing
layout: autoresizing masks. Each view had an autoresizing mask that constrained its relationship with
its superview, but this mask could not affect relationships between sibling views.

By default, views create and add constraints based on their autoresizing masks. However, these
translated constraints often conflict with the explicit constraints in your layout, which results in an
unsatisfiable constraints problem.

To see this happen, comment out the line in loadView() that turns off the translation of autoresizing
masks.

// segmentedControl.translatesAutoresizingMaskIntoConstraints = false
view.addSubview(segmentedControl)

Now the segmented control has a resizing mask that will be translated into a constraint. Build and run
the application and navigate to the map interface. You will not like what you see. The console will
report the problem and its solution.

Unable to simultaneously satisfy constraints.
Probably at least one of the constraints in the following list is one you don't
want. Try this: (1) look at each constraint and try to figure out which you don't
expect; (2) find the code that added the unwanted constraint or constraints and
fix it. (Note: If you're seeing NSAutoresizingMaskLayoutConstraints that you don't
understand, refer to the documentation for the UIView property
translatesAutoresizingMaskIntoConstraints)
(
"<NSAutoresizingMaskLayoutConstraint:0x7fb6b8e0ad00
h=—-& v=—-& H: [UISegmentedControl:0x7fb6b9897390(212)1>",
"<NSLayoutConstraint:0x7fb6b9975350 UISegmentedControl:0x7fb6b9897390.leading
== UILayoutGuide:@x7fb6b9972640'UIViewLayoutMarginsGuide'.leading>",
"<NSLayoutConstraint:0x7fb6b9975460 UISegmentedControl:0x7fb6b9897390.trailing
== UILayoutGuide:0x7fb6b9972640'UIViewLayoutMarginsGuide'.trailing>"",
"<NSLayoutConstraint:0x7fb6b8e0b370 'UIView-Encapsulated-Layout-Width'
H: [MKMapView:0x7fb60b8d237c0(0)]1>",
"<NSLayoutConstraint:0x7fb6b9972020 'UIView-leftMargin—-guide-constraint'
H: |-(0)-[UILayoutGuide:0x7fb6b9972640'UIViewLayoutMarginsGuide'] (LTR)
(Names: '|':MKMapView:0x7fb6b8d237c0)>",
"<NSLayoutConstraint:0x7fb6b9974f50 'UIView-rightMargin-guide-constraint'
H: [UILayoutGuide:0x7fb6b9972640'UIViewLayoutMarginsGuide']-(@)—| (LTR)
(Names: '|':MKMapView:@x7fb6b8d237c0)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x7fb6b9975460 UISegmentedControl:0x7fb6b9897390.trailing
== UILayoutGuide:0x7fb6b9972640'UIViewLayoutMarginsGuide'.trailing>

Make a symbolic breakpoint at UIViewAlertForUnsatisfiableConstraints to catch
this in the debugger.

The methods in the UIConstraintBasedlLayoutDebugging category on UIView listed
in <UIKit/UIView.h> may also be helpful.

117

Chapter 6 Programmatic Views

Let’s go over this output. Auto Layout is reporting that it is Unable to simultaneously satisfy
constraints. This happens when a view hierarchy has constraints that conflict.

Then, the console spits out some handy tips and a list of all constraints that are involved, with their
descriptions. Let’s look at the format of one of these constraints more closely.

<NSLayoutConstraint:0x7fb6b9975350 UISegmentedControl:0x7fb6b9897390. leading
== UIlLayoutGuide:0x7fb6b9972640'UIViewLayoutMarginsGuide’. leading>

This description indicates that the constraint located at memory address 0x7fb6b99753580 is setting the
leading edge of the UISegmentedControl (at 0x7fb6b9897390) equal to the leading edge of the margin
of the UILayoutGuide (at 0x7fb6b9972640).

Five of these constraints are instances of NSLayoutConstraint. One, however, is an instance of
NSAutoresizingMaskLayoutConstraint. This constraint is the product of the translation of the image
view’s autoresizing mask.

Finally, Auto Layout tells you how it is going to solve the problem by listing the conflicting constraint
that it will ignore. Unfortunately, it chooses poorly and ignores one of your explicit instances of
NSLayoutConstraint instead of the NSAutoresizingMaskLayoutConstraint. This is why your
interface looks like it does.

The note before the constraints are listed is very helpful: The NSAutoresizingMaskLayoutConstraint
needs to be removed. Better yet, you can prevent this constraint from being added in the first place by
explicitly disabling translation in loadView():

#+ segmentedControl.translatesAutoresizingMaskIntoConstraints = false
view.addSubview(segmentedControl)

118

Localization

The appeal of 10S is global —iOS users live in many countries and speak many languages. You can
ensure that your application is ready for a global audience through the processes of internationalization
and localization.

Internationalization is making sure your native cultural information (like language, currency, date
format, number format, etc.) is not hardcoded into your application. Localization is the process of
providing the appropriate data in your application based on the user’s Language and Region Format
settings. You can find these settings in the iOS Settings application (Figure 7.1). Select the General
row and then the Language & Region row.

Figure 7.1 Language and region settings

Carrier 12:18 PM (—

(General Language & Region

iPhone Language English

Other Languages...

REGION FORMATS

Region United States
Calendar Gregorian
Advanced

Region Format Example

12:34 AM
Monday, January 5, 2015
$1,234.56 4,567.89

Here, users can set their region, like United States or United Kingdom. (Why does Apple use “region”
instead of “country”’? Some countries have more than one region with different settings. Scroll through
the options in Region to see for yourself.)

119

Chapter 7 Localization

Apple makes internationalization and localization relatively simple. An application that takes
advantage of the localization APIs does not even need to be recompiled to be distributed in other
languages or regions. (By the way, because “internationalization” and “localization” are long words,
you will sometimes see them abbreviated as 118n and L1@n, respectively.)

In this chapter, you will first internationalize the WorldTrotter application and then localize it into
Spanish (Figure 7.2).

Figure 7.2 Localized WorldTrotter

Carrier & 10:07 AM (— Operador & 10:16 (-
Badf™""] o

91 ,1 s

Dublin °
o
Manchester

PAISES
IRLANDA BAJOS

grados Fahrenheit
es realmente

32,8

BELGICA AL

grados Celsius
ESPANA
o
PORTUGAL Madtid
Argel
1 2 3
ABC DEF
4 5 6 Casablanca & T(
e e MNO MARRUECOS
7 8 9
PQRS TUV WXYZ I,
' 0 A 8

Converti Mapa

120

Internationalization

Internationalization

In this first section, you will use the NumberFormatter and NSNumber classes to internationalize the
ConversionViewController.

Formatters

In Chapter 4, you used an instance of NumberFormatter to set the text of the Celsius label in
ConversionViewController. NumberFormatter has a locale property, which is set to the device’s
current locale. Whenever you use a NumberFormatter to create a number, it checks its locale property
and sets the format accordingly. So the text of the Celsius label has been internationalized from the
start.

Locale knows how different regions display symbols, dates, and decimals and whether they use the
metric system. An instance of Locale represents one region’s settings for these variables. When you
access the current property on Locale, the instance of Locale that represents the user’s region setting
is returned. Once you have that instance of Locale, you can ask it questions, like, “Does this region use
the metric system?” or, “What is the currency symbol for this region?”

let currentLocale = Locale.current
let isMetric = currentLocale.usesMetricSystem
let currencySymbol = currentLocale.currencySymbol

Even though the Celsius label is already internationalized, there is still a problem with it. Change the
system region to Spain to see. Select the active scheme pop-up and select Edit Scheme... (Figure 7.3).

Figure 7.3 Edit scheme

() ® > /A WorldTrotter) @i§ iPhone 7
v f\ WorldTrotter | 2

New Scheme...
Manage Schemes...

121

Chapter 7 Localization

Make sure that Run is selected on the lefthand side and then select the Options tab at the top. In the
Application Region pop-up, select Europe and then Spain (Figure 7.4). Finally, Close the active scheme
window.

Figure 7.4 Selecting a different region

/A\ WorldTrotter) i@ iPhone 7

»]“ Build Info Arguments Options Diagnostics
3 targets
> Run Core Location Allow Location Simulation
Debug -
Default Location None a
> , Test
Debug .
Application Data None
> Profile PP H
Release . . 2
Routing App Coverage File None u
> a Analyze
Debug
Background Fetch Launch due to a background fetch event
> p Archive
Release P .
clea Localization Debugging Show non-localized strings
Application Language System Language a
Application Region Spain E
XPC Services Debug XPC services used by this application
Queue Debugging Enable backtrace recording
Duplicate Scheme Manage Schemes... Shared W

Build and run the application. On the ConversionViewController, tap the text field and make sure the
software keyboard is visible. You may already notice one difference: In Spain, the decimal separator

is a comma instead of a period (and the thousands separator is a period instead of a comma), so the
number written 123,456.789 in the United States would be written 123.456,789 in Spain.

Attempt to type in multiple decimal separators (the comma) and notice that the application happily
allows it. Whoops! Your code for disallowing multiple decimal separators checks for a period instead
of using a locale-specific decimal separator. Let’s fix that.

122

Formatters

Open ConversionViewController.swift and update
textfield(_:shouldChangeCharactersIn:replacementString:) to use the locale-specific decimal
separator.

func textField(_ textField: UITextField,
shouldChangeCharactersIn range: NSRange,
replacementString string: String) -> Bool {

%e%—Fep%aeemeﬂ*;e**HaﬁBeeima%5epafa%ef—-—5*fiﬂg;faﬂgé;e#+—ﬂqﬂ+.

let currentLocale = Locale.current
let decimalSeparator = currentLocale.decimalSeparator 2? "."

let existingTextHasDecimalSeparator
= textField.text?.range(of: decimalSeparator)
let replacementTextHasDecimalSeparator = string.range(of: decimalSeparator)

if existingTextHasDecimalSeparator != nil,
replacementTextHasDecimalSeparator != nil {
return false

} else {

return true
¥
}

Build and run the application. The application no longer allows you to type in multiple decimal
separators, and it does this in a way that is independent of the user’s region choice.

But there is still a problem. If you type in a number with a decimal separator that is not a period, the
conversion to Celsius is not happening — the Celsius label displays “???”. What is going on here? In
fahrenheitFieldEditingChanged(_:), you are using an initializer for the Double type that takes in a
string as its argument. This initializer does not know how to handle a string that uses something other
than a period for its decimal separator.

Let’s fix this code using the NumberFormatter class. In ConversionViewController.swift, update
fahrenheitFieldEditingChanged(_:) to convert the text field’s string into a number in a locale-
independent way.

@IBAction func fahrenheitFieldEditingChanged(_ textField: UITextField) {

iflet—textw—texthieltd—text—tet—value—=DPoubltetterxt)—f
fahrenheitVatue—=leasuremnentfratuer—vatue—unit—Fahrenheit)

if let text = textField.text, let number = numberFormatter.number(from: text) {
fahrenheitValue = Measurement(value: number.doubleValue, unit: .fahrenheit)

} else {
fahrenheitValue = nil

}

b

Here you are using the number formatter’s instance method number (from:) to convert the string into

a number. Because the number formatter is aware of the locale, it is able to convert the string into a
number. If the string contains a valid number, the method returns an instance of NSNumber. NSNumber is
a class that can represent a variety of number types, including Int, Float, Double, and more. You can
ask an instance of NSNumber for its value represented as one of those values. You are doing that here to
get the doubleValue of the number.

123

Chapter 7 Localization

Build and run the application. Now that you are converting the string in a locale-independent way, the
text field’s value is properly converted to its Celsius value (Figure 7.5).

Figure 7.5 Conversion with a comma separator

4:49 PM -

91,1

degrees Fahrenheit
is really

32,8

degrees Celsius

Carrier &

! 2 3
& > L
g | 8 e

0] &

124

Base internationalization

Base internationalization

When internationalizing, you ask the instance of Locale questions. But the Locale only has a few
region-specific variables. This is where localization — creating application-specific substitutions

for different region and language settings — comes into play. Localization usually involves either
generating multiple copies of resources (like images, sounds, and interface files) for different regions
and languages or creating and accessing strings tables (which you will see later in the chapter) to
translate text into different languages.

Before you go through the process of localizing resources, you must understand how an iOS
application handles localized resources.

When you build a target in Xcode, an application bundle is created. All of the resources that you
added to the target in Xcode are copied into this bundle along with the executable itself. This bundle
is represented at runtime by an instance of Bundle known as the main bundle. Many classes work with
the Bundle to load resources.

Localizing a resource puts another copy of the resource in the application bundle. These resources are
organized into language-specific directories, known as lproj directories. Each one of these directories
is the name of the localization suffixed with 1proj. For example, the American English localization

is en_US, where en is the English language code and US is the United States of America region code,
so the directory for American English resources is en_US. lproj. (The region can be omitted if you

do not need to make regional distinctions in your resource files.) These language and region codes are
standard on all platforms, not just iOS.

When a bundle is asked for the path of a resource file, it first looks at the root level of the bundle for a
file of that name. If it does not find one, it looks at the locale and language settings of the device, finds
the appropriate lproj directory, and looks for the file there. Thus, just by localizing resource files, your
application will automatically load the correct file.

One option for localizing resource files is to create separate storyboard files and manually edit
each string in each file. However, this approach does not scale well if you are planning multiple
localizations. What happens when you add a new label or button to your localized storyboard? You
have to add this view to the storyboard for every language. Not fun.

To simplify the process of localizing interface files, Xcode has a feature called base
internationalization. Base internationalization creates the Base. lproj directory, which contains

the main interface files. Localizing individual interface files can then be done by creating just the
Localizable.strings files. It is still possible to create the full interface files, in case localization
cannot be done by changing strings alone. However, with the help of Auto Layout, string replacement
is sufficient for most localization needs. In the next section, you will use Auto Layout to prepare your
layout for localization.

125

Chapter 7 Localization

Preparing for localization

Open Main.storyboard and show the assistant editor either by clicking View — Assistant Editor
— Show Assistant Editor or with the keyboard shortcut Option-Command-Return. From the jump
bar dropdown, select Preview (Figure 7.6). The preview assistant allows you to easily see how
your interface will look across screen sizes and orientations as well as between different localized
languages.

Figure 7.6 Opening the preview assistant

B2 < @) Preview Main.storyboard (Preview)4|

1] mManual >
@ Automatic (1) >
@) Top Level Objects (1) >
@) Localizations (1) >

@) Notification Payloads

126

Preparing for localization

In the storyboard, select the Conversion View Controller to see its preview (Figure 7.7).

Figure 7.7 Preview assistant

2 < @) Preview Main.storyboard (Preview) a + X

degrees Fahrenheit
is really

100

degrees Celsius

8

Convert

O iPhone 7 | Portrait

4p English

Notice the controls in the lower corners of the preview assistant. The + button on the left side allows
you to add additional screen sizes to the preview canvas. This allows you to easily see how changes to
your interface propagate across screen sizes and orientations simultaneously. The button on the right
side allows you to select a language to preview this interface in.

(If your preview is for a configuration other than iPhone 7, use the + button to add this configuration.
Then click on whatever preview opened by default and press the Delete key to remove it.)

You have not localized the application into another language yet, but Xcode supplies a pseudolanguage
for you to use. Pseudolanguages help you internationalize your applications before receiving
translations for all of your strings and assets. The built-in pseudolanguage, Double-Length
Pseudolanguage, mimics languages that are more verbose by repeating whatever text string is in the
text element. So, for example, “is really” becomes “is really is really.”

127

Chapter 7 Localization

Select the Language pop-up that says English and choose Double-Length Pseudolanguage. The labels
all have their text doubled (Figure 7.8).

Figure 7.8 Doubled text strings

8 < 2) Preview Main.storyboard (Preview) a + X

s Fahrenheit degrees Fal
is really is really

100 100

ees Celsius degrees Ce

8

Convert Convert

&) iPhone 7 | Portrait

- Double-Length Pseudolanguage

The double-length pseudolanguage reveals a problem immediately: The labels go off both the left and
right edges of the screen, and you are unable to read the entire strings. The fix is to constrain all of the
labels so that their leading and trailing edges stay within the margins of their superview. Then you will
need to change the line count for the labels to @, which tells the labels that their text should wrap to
multiple lines if needed. You are going to start by fixing one label, then repeat the steps for the rest of
the labels.

128

Preparing for localization

In the canvas, select the degrees Fahrenheit label. You are going to add constraints to this label in

a new way. Control-drag from the label to the left side of the superview. When you do, a context-
sensitive pop-up will appear giving you the constraints that make sense for this direction (Figure 7.9).
Select Leading Space to Container Margin from the list.

Figure 7.9 Creating constraints by Control-dragging

o ot o
| | —degrees Hahrenheit
is really

Center Vertically in Container

Equal Widths
Equal Heights

Aspect Ratio 1 O

The direction that you drag influences which possible constraints are displayed. A horizontal drag
will show horizontal constraints, and a vertical drag will show vertical constraints. A diagonal drag
will show both horizontal and vertical constraints, which is useful for setting up many constraints
simultaneously.

Now Control-drag from the degrees Fahrenheit label to the right side of the superview and select
Trailing Space to Container Margin.

129

Chapter 7 Localization

On their own, these constraints are not very good. They maintain the existing fixed distance between
the leading and trailing edges of the label, as you can see in the preview assistant (Figure 7.10).

Figure 7.10 Preview assistant with new constraints

degrees Fahrenh...
is really is really

100 100

ees Celsius degrees Ce

8
Convert Convert

iPhone 7 | Portrait

What you really want is for the distance between the label and the margins to be greater than or equal
to 0. You can do this with inequality constraints.

130

Preparing for localization

Select the leading constraint by clicking on the I-bar to the left of the label. Open its attributes
inspector and change the Relation to Greater Than or Equal and the Constant to 0 (Figure 7.11).

Figure 7.11 Inequality constraint

® O B O
Horizontal Space Constraint
First tem degrees Fahrenheit.Leading
Relation Greater Than or Equal

Second Item = Superview.Leading Margin

Constant O v

Priority 1000 v

il <11 <

Multiplier 1 v
Identifier

Placeholder Remove at build time

Installed

Do the same for the trailing constraint. Take a look at the preview assistant; the interface is looking
better, but the label is still being truncated.

Select the label and open its attributes inspector. Change the Lines count to 8. Now take a look at the
preview assistant; the label is no longer being truncated and instead the text flows to a second line.
Because the other labels are each related to the label above them, they have automatically been moved
down.

Repeat the steps above for the other labels. You will need to:
* Add aleading and trailing constraint to each label.

* Set the constraints’ relation to Greater Than or Equal and the constant to @. (A shortcut for editing
a constraint is to double-click on it.)

* Change the label’s line count to @.

131

Chapter 7 Localization

When you are done, the preview assistant with the double-length pseudolanguage will look like
Figure 7.12.

Figure 7.12 Preview assistant with final constraints

degrees Fahrenheit
degrees Fahrenheit

is really is really

100 100

degrees Celsius
degrees Celsius

8

Conver t Conver t
iPhone 7 | Portrait

At this point, you are done with the preview assistant. You can close the assistant editor with the x in
the top-right corner.

132

Localization

Localization

WorldTrotter is now internationalized — its interface is able to adapt to various languages and regions.
Now it is time to localize the app — that is, to update the strings and resources in the application

for a new language. In this section, you are going to localize the interface of WorldTrotter: the
Main.storyboard file. You will create English and Spanish localizations, which will create two 1proj
directories in addition to the base one.

Start by localizing a storyboard file. Select Main.storyboard in the project navigator.

Open the file inspector by clicking the [tab in the inspector selector or by using the keyboard shortcut
Option-Command-1. Find the section in this inspector named Localization. Check the English box and
make sure that the dropdown says Localizable Strings (Figure 7.13). This will create a strings table that
you will use later to localize the application.

Figure 7.13 Localizing into English

Localization
Base
English Localizable Strings ¢

Next, in the project navigator, select the WorldTrotter project at the top. Then select WorldTrotter under
the Project section in the side list, and make sure the Info tab is open. (If you cannot see the side list,
you can open it using the Show projects and targets list button in the upper-left corner (Figure 7.14).)

Figure 7.14 Showing the project settings

Show/Hide projects and targets list

it

PROJECT
TARGETS
/N WorldTrotter
"] WorldTrotterTests

[WorldTrotterUITests

133

Chapter 7 Localization

Click the + button under Localizations and select Spanish (es). In the dialog, you can uncheck the
LaunchScreen.storyboard file; keep the Main.storyboard file checked. Make sure that the reference
language is Base and the file type is Localizable Strings. Click Finish. This creates an es. lproj folder
and generates the Main. strings file in it that contains all the strings from the base interface file. The
Localizations configuration should look like Figure 7.15.

Figure 7.15 Localizations

B2 < @] WorldTrotter

D Info Build Settings
PROJECT
V Deployment Target
Q WorldTrotter
TARGETS iOS Deployment Target 10.0
Af WorldTrotter
7] WorldTrotterTests Vv Configurations
"] WorldTrotterUITests Na B:
» Debug No Configurations Set
» Release No Configurations Set
+
Use Release for command-line builds

V¥ Localizations

English — Development Language 2 Files Localized
Spanish 1 File Localized
+

Use Base Internationalization

+ ®

Look in the project navigator. Click the disclosure button next to Main.storyboard (Figure 7.16).
Xcode moved the Main.storyboard file to the Base. lproj directory and created the Main.strings file
in the es. lproj directory.

Figure 7.16 Localized storyboard in the project navigator

v Main.storyboard
Main.storyboard (Base)
Main.strings (English)
Main.strings (Spanish)

134

Localization

Click on the Spanish version of Main.strings. When this file opens, the text is not in Spanish. You
have to translate localized files yourself; Xcode is not that smart.

Edit this file according to the following text. The numbers and order may be different in your file, but
you can use the text and title fields in the comments to match up the translations.

/* Class = "UITabBarItem"; title = "Map"; ObjectID = "6xh-05-yRt"; */
"6xh-05-yRt.title" = LMap* "Mapa";

/* Class = "UILabel"; text = "degrees Celsius"; ObjectID = "7la-u7-mx6"; */
"7la-u7-mx6.text" = ‘degrees—Celsius” "grados Celsius";

/* Class = "UILabel"; text = "degrees Fahrenheit"; ObjectID = "Dic-rs—-P@S"; */
"Dic-rs-POS. text" = itdegrees—Fahrenheit: "grados Fahrenheit";

/* Class = "UILabel"; text = "100"; ObjectID = "Eso-Wf-EyH"; */
"Eso-Wf-EyH. text" = "100";

/* Class = "UITextField"; placeholder = "value"; ObjectID = "On4-jV-YlY"; */
"On4-jV-Y1lY.placeholder" = “watwe= "valor";

/* Class = "UILabel"; text = "is really"; ObjectID = "wtF-xR-gbz"; */
"wtF-xR-gbZ.text" = Zis—reatty" "es realmente";

/* Class = "UITabBarItem"; title = "Convert"; ObjectID = "zLY-50-CeX"; */
"zLY-50-CeX.title" = “Eenvert: "Convertir";

Now that you have finished localizing this storyboard file, let’s test it out. First, there is a little

Xcode glitch to be aware of: Sometimes Xcode ignores a resource file’s changes when you build an
application. To ensure that your application is being built from scratch, first delete it from your device
or simulator. (Press and hold its icon in the launcher. When it starts to wiggle, tap the delete badge.)
Relaunch Xcode. (Yes, exit and start it again.) Then, choose Clean from the Product menu. Finally, to
be absolutely sure, press and hold the Option key while opening the Product menu and choose Clean
Build Folder.... This will force the application to be entirely recompiled, rebundled, and reinstalled.

Open the active scheme pop-up and select Edit Scheme. Make sure Run is selected on the lefthand side
and open the Options tab. Open the Application Language pop-up and select Spanish. Finally, confirm
that Spain is still selected from the Application Region pop-up. Close the window.

135

Chapter 7 Localization

Build and run the application. Make sure you are viewing the ConversionViewController, and
you will see the interface in Spanish. Because you set the constraints on the labels to accommodate
different lengths of text, they resize themselves appropriately (Figure 7.17).

Figure 7.17 Spanish ConversionViewController

eecee T 9:41 AM 100%

32

grados Fahrenheit
es realmente

0

grados Celsius

NSLocalizedString and strings tables

In many places in your applications, you create String instances dynamically or display string literals
to the user. To display translated versions of these strings, you must create a strings table. A strings
table is a file containing a list of key-value pairs for all of the strings that your application uses and
their associated translations. It is a resource file that you add to your application, but you do not need
to do a lot of work to get data from it.

You might use a string in your code like this:
let greeting = "Hello!"™

To internationalize the string in your code, you replace literal strings with the function
NSLocalizedString(_:comment:).

let greeting = NSLocalizedString("Hello!", comment: "The greeting for the user")

This function takes two arguments: a key and a comment that describes the string’s use. The key is the
lookup value in a strings table. At runtime, NSLocalizedString(_:comment:) will look through the
strings tables bundled with your application for a table that matches the user’s language settings. Then,
in that table, the function gets the translated string that matches the key.

136

NSLocalizedString and strings tables

Now you are going to internationalize the strings that the MapViewController displays in its
segmented control. In MapViewController.swift, locate the loadView() method and update the
initializer for the segmented control to use localized strings.

override func loadView() {
// Create a map view
mapView = MKMapView()

// Set it as *the* view of this view controller
view = mapView

tet—segmentedControt

let standardString = NSLocalizedString("Standard", comment: "Standard map view")
let satelliteString
= NSLocalizedString("Satellite", comment: "Satellite map view")
let hybridString = NSLocalizedString("Hybrid", comment: "Hybrid map view")
let segmentedControl
= UISegmentedControl(items: [standardString, satelliteString, hybridString])

Once you have files that have been internationalized with the NSLocalizedString(_:comment:)
function, you can generate strings tables with a command-line application.

Open the Terminal app. This is a Unix terminal; it is used to run command-line tools. You want to
navigate to the location of MapViewController.swift. If you have never used the Terminal app before,
here is a handy trick. In Terminal, type the following:

cd
followed by a space. (Do not press Return yet.)

Next, open Finder and locate MapViewController.swift and the folder that contains it. Drag the icon
of that folder onto the Terminal window. Terminal will fill out the path for you. It will look something
like this:

cd /Users/cbkeur/i0SDevelopment/WorldTrotter/WorldTrotter/
Press Return. The current working directory of Terminal is now this directory.

Use the terminal command 1s to print out the contents of the working directory and confirm that
MapViewController.swift is in that list.

To generate the strings table, enter the following into Terminal and press Return:
genstrings MapViewController.swift

The resulting file, Localizable.strings, contains the strings from MapViewController. Drag this
new file from Finder into the project navigator (or use the File = Add Files to "WorldTrotter"... menu
item). When the application is compiled, this resource will be copied into the main bundle.

137

Chapter 7 Localization

Open Localizable.strings. The file should look something like this:

/* Hybrid map view */
"Hybrid" = "Hybrid";

/* Satellite map view */
"Satellite" = "Satellite";

/* Standard map view */
"Standard" = "Standard";

Notice that the comment above your string is the second argument you supplied to the
NSLocalizedString function. Even though the function does not require the comment argument,
including it will make your localizing life easier.

Now that you have created Localizable.strings, you need to localize it in Xcode. Open its file
inspector and click the Localize... button in the utility area. Make sure Base is selected from the
pop-up and click Localize. Add the Spanish and English localization by checking the box next to each
language.

In the project navigator, click on the disclosure triangle that now appears next to
Localizable.strings. Open the Spanish version. The string on the lefthand side is the key that is
passed to the NSLocalizedString(_:comment:) function, and the string on the righthand side is what
is returned. Change the text on the righthand side to the Spanish translations shown below. (To type

an accented character, such as “é,” press and hold the appropriate character on your keyboard and then
press the appropriate number from the pop-up.)

/* Hybrid map view */

"Hybrid" = “Hybrid" "Hibrido";

/* Satellite map view */
"Satellite" = “Satelttite” "Satélite";

/* Standard map view */
"Standard" = ‘“Standard” "Estandar";

138

NSLocalizedString and strings tables

Build and run the application again. Now all these strings, including the titles in the segmented control,
will appear in Spanish (Figure 7.18). If they do not, you might need to delete the application, clean
your project, and rebuild. (Or check your scheme language setting.)

Figure 7.18 Spanish MapViewController

Operador = 4:45 PM -

Yellowknife
o

AMERICA
ocalgary DEL
couver NORTE
OS ttl
e Minneapolis Montreal
o Toronto (o)
Chicago 3 H
9%
Denver . . o
o Saint Louis Nueva York
(] o... P .

ancisco

Internationalization and localization are very important for your app to reach the largest audience.
Additionally, as you saw early in this chapter, your app might not work for some users if you have not
properly internationalized it. You will internationalize (but not localize) your projects in the rest of this
book.

Over the past five chapters, you have built a rather impressive application that allows the user to
convert between Celsius and Fahrenheit as well as display a map in a few different ways. Not only
does this application scale well on all iPhone screen sizes, but it is also localized into another language.
Congratulations!

139

Chapter 7 Localization

Bronze Challenge: Another Localization

Practice makes perfect. Localize WorldTrotter for another language. Use a translation website if you
need help with the language.

For the More Curious: Bundle’s Role in
Internationalization

The real work of taking advantage of localizations is done for you by the class Bundle. A bundle
represents a location on the filesystem that groups the compiled code and resources together. The
“main bundle” is another name for the application bundle, which contains all of the resources and the
executable for the application. You will learn more about the application bundle in Chapter 16.

When an application is built, all of the lproj directories are copied into the main bundle. Figure 7.19
shows the main bundle for WorldTrotter (with some additional images added to the project).

Figure 7.19 Application bundle

[NON) ~, WorldTrotter
< s Blm o =y g v Q
Name ~ Date Modified Size Kind
v Base.lproj Today, 11:14 AM -- Folder
== Hat.png Today, 11:14 AM 3.5 MB PNG image
LaunchScreen.storyboardc Today, 11:14 AM 3 KB Interfa...ument
Localizable.strings Today, 10:53 AM 77 bytes text
Main.storyboardc Today, 11:14 AM 8 KB Interfa...ument
B Tom.png Today, 11:14 AM 5 MB PNG image
B Boo.png Today, 11:14 AM 3.8 MB PNG image
v en.lproj Today, 11:14 AM -- Folder
Localizable.strings Today, 10:53 AM 77 bytes text
Main.strings Sep 24, 2015, 8:48 AM 754 bytes text
B8 Tom.png Today, 11:14 AM 5 MB PNG image
v es.lproj Today, 11:14 AM -- Folder
Localizable.strings Today, 10:53 AM 129 bytes text
Main.strings Sep 24, 2015, 8:48 AM 758 bytes text
= Tom.png Today, 11:14 AM 5 MB PNG image
» Frameworks Today, 11:14 AM -- Folder
Info.plist Today, 10:53 AM 1 KB property list
Pkglnfo Today, 10:53 AM 8 bytes TextEd...ument
M worldTrotter Today, 10:53 AM 96 KB Unix E...le File

Bundle knows how to search through localization directories for every type of resource using the
instance method url(forResource:withExtension:). When you want a path to a resource bundled
with your application, you call this method on the main bundle. Here is an example using the resource
file Boo.png:

let path = Bundle.main.url(forResource:"Boo", withExtension: 'png")
When attempting to locate the resource, the bundle first checks to see whether the resource exists at the

top level of the application bundle. If so, it returns the full URL to that file. If not, the bundle gets the
device’s language and region settings and looks in the appropriate lproj directories to construct the

140

For the More Curious: Importing and Exporting as XLIFF

URL. If it still does not find it, it looks within the Base. lproj directory. Finally, if no file is found, it
returns nil.

In the application bundle shown in Figure 7.19, if the user’s language is set to Spanish, Bundle will
find Boo. png at the top level, Tom.png in es. lproj, and Hat.png in Base. lproj.

When you add a new localization to your project, Xcode does not automatically remove the resources
from the top-level directory. This is why you must delete and clean an application when you localize

a file — otherwise, the previous unlocalized file will still be in the root level of the application bundle.
Even though there are lproj folders in the application bundle, the bundle finds the top-level file first

and returns its URL.

For the More Curious: Importing and Exporting as
XLIFF

The industry-standard format for localization data is the XLIFF data type, which stands for XML
Localisation Interchange File Format (and XML stands for Extensible Markup Language). When
working with translators, you will often send them an XLIFF file containing the data in the application
to localize, and they will give you back a localized XLIFF file for you to import.

Xcode natively supports importing and exporting localization data in XLIFF. The exporting process
will take care of finding and exporting the localized strings within the project, which you previously
did manually using the genstrings tool.

To export the localizable strings in XLIFF, select the project (WorldTrotter) in the project navigator.
Then select the Editor menu, and then Export For Localization.... On the next screen, you can choose
whether to export existing translations (which is probably a good idea so the translator does not do
redundant work) and which languages you would like exported (Figure 7.20).

Figure 7.20 Exporting localization data as XLIFF
Save As: WorldTrotter v
Tags:

Where: WorldTrotter [T

Include: Existing Translations d

Languages: Spanish

Cancel | QL

To import localizations, select the project (WorldTrotter) in the project navigator. Then select Editor —
Import Localizations.... After choosing a file, you will be able to confirm the updates before you import.

141

Controlling Animations

The word “animation” is derived from a Latin word that means “the act of bringing to life.” In your
applications, animations can smoothly bring interface elements onscreen or into focus, they can
draw the user’s attention to an actionable item, and they can give clear indications of how your app is
responding to the user’s actions. In this chapter, you will return to your Quiz app and use a variety of
animation techniques to bring it to life.

Before updating Quiz, though, let’s take a look at what can be animated by looking at the
documentation. To open the documentation, open Xcode’s Help menu and select Documentation and
API Reference. This will open the documentation in a new window.

With the documentation open, use the search bar at the top to search for “UIView.” Under API
Reference in the search results, click UlView to open the class reference, then scroll down to the
section titled Animations. The documentation gives some animation recommendations (which we will
follow in this book) and lists the properties on UIView that can be animated (Figure 8.1).

143

Chapter 8 Controlling Animations

Figure 8.1 UIView animation documentation

%0 < | > [Q UlView)

Animations

Changes to several view properties can be animated—that is, changing the
property creates an animation that conveys the change to the user over a
short period of time. The UIView class does most of the work of performing
the actual animations but you must still indicate which property changes you
want to be animated. There are two different ways to initiate animations:

e IniOS 4 and later, use the block-based animation methods.
(Recommended)

e Use the begin/commit animation methods.

The block-based animation methods (such as
animate(withDuration:animations:)) greatly simplify the creation of
animations. With one method call, you specify the animations to be
performed and the options for the animation. However, block-based
animations are available only in iOS 4 and later. If your application runs on
earlier versions of iOS, you must use the beginAnimations(_:context:)
and commitAnimations () class methods to mark the beginning and
ending of your animations.

The following properties of the UIView class are animatable:
e frame
e bounds
e center
e transform

e alpha

Basic Animations

The documentation is always a good starting point for learning about any iOS technology. With that
little bit of information under your belt, let’s go ahead and add some animations to Quiz. The first type
of animation you are going to use is the basic animation. A basic animation animates between a start
value and an end value (Figure 8.2).

Figure 8.2 Basic animation

O

The first animation you are going to add will animate the alpha value (the degree of transparency) of
the question label associated with ViewController. When the user advances to the next question, you
will use an animation to fade in the label. There are class methods on UIView that will allow you to
accomplish this. The simplest UIView animation method is:

class func animate(withDuration duration: TimeInterval, animations: () —-> Void)

This class method takes two arguments: a duration of type TimeInterval (which is an alias for a
Double) and an animations variable that is a closure.

144

Closures

Closures

A closure is a discrete bundle of functionality that can be passed around your code. Closures are a lot
like functions and methods. In fact, functions and methods are just special cases of closures.

Closures have a lightweight syntax that allows them to be easily passed in as arguments to functions
and methods. A closure can even be the return type of a function or method. In this section, you will
use a closure to specify the animations that you want to occur.

The signature of a closure is a comma-separated list of arguments within parentheses followed by a
return arrow and the return type:

(arguments) —> return type

Notice that this syntax is similar to the syntax for functions:

func functionName(arguments) —> return type

Now take a look again at the closure signature that the animations argument expects:

class func animate(withDuration duration: TimeInterval, animations: () —-> Void)

This closure takes in no arguments and does not return anything. (You will also see this return type
expressed as (), which means the same thing as Void.)

The closure signature is pretty straightforward and familiar, but how do you declare a closure in code?
Closure syntax takes the following form:

{ (arguments) -> return type in
// code
}

You write a closure expression inside braces ({}). The closure’s arguments are listed inside parentheses
immediately after the opening brace. A closure’s return type comes after the parameters and uses the
regular syntax. The keyword in is used to separate the closure’s arguments and return type from the
statements inside of its body.

Open Quiz.xcodeproj. In ViewController.swift, add a new method to handle the animations and
declare a closure constant that takes in no arguments and does not return anything.

func animateLabelTransitions() {

let animationClosure = { () -> Void in

}

145

Chapter 8 Controlling Animations

Now you have a constant that references a chunk of functionality. Currently, however, this closure does
not actually do anything. Add functionality to the closure that sets the alpha of the questionLabelto 1.
Then, pass this closure as an argument to animate (withDuration:animations:).

func animatelLabelTransitions() {

let animationClosure = { () -> Void in
self.questionLabel.alpha = 1
}

// Animate the alpha
UIView.animate(withDuration: 0.5, animations: animationClosure)

i

The questionLabel already has an alpha of 1 when it comes onscreen, so you will not see
anything animate if you build and run. To address this, override viewWillAppear(_:) to reset the
questionLabel’s alpha to @ each time the ViewController’s view comes onscreen.

override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(animated)

// Set the label's initial alpha
questionLabel.alpha = 0

}
The code above works great, but you can make it more concise. Update the code.

func animatelLabelTransitions() {

1 . s oncl ‘ Void—
setf-questieontabet—atpha—m—13
4

// Animate the alpha
YLV ewand i £t . 65 . . . - i

UIView.animate(withDuration: 0.5, animations: {
self.questionLabel.alpha = 1
i3]

}

You have made two changes: First, you are passing in the closure anonymously (i.e., passing it directly
into the method instead of assigning it to a variable or constant). Second, you have removed the type
information because the closure can infer this from the context.

Now call the animateLabelTransitions () method whenever the user taps the Next Question button.

@IBAction func showNextQuestion(_ sender: UIButton) {
currentQuestionIndex += 1
if currentQuestionIndex == questions.count {
currentQuestionIndex = @
}

let question: String = questions[currentQuestionIndex]
questionLabel.text = question
answerlLabel.text = "?27?"

animateLabelTransitions()

I

Build and run the application. When you tap on the Next Question button, the label will fade into view.
Animations provide a less jarring user experience than having views just pop into existence.

146

Another Label

Another Label

The animation works great the first time the Next Question button is pressed, but there is no visible
animation on subsequent button presses because the label already has an alpha value of 1. In this
section, you are going to add another label to the interface. When the Next Question button is pressed,
the existing label will fade out while the new label (with the text of the next question) will fade in.

At the top of ViewController.swift, replace your declaration of a single label with two labels.

@IBOutlet var currentQuestionLabel: UILabel!
@IBOutlet var nextQuestionLabel: UILabel!
@IBOutlet var answerLabel: UILabel!

Xcode flags four places where you need to replace questionLabel with one of your new labels.
Update viewDidLoad () to use currentQuestionLabel. Update viewWillAppear(_:) and
showNextQuestion(_:) to use nextQuestionLabel.

func viewDidLoad() {
super.viewDidLoad()

currentQuestionLabel.text = questions[currentQuestionIndex]

h

override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(animated)

// Set the label's initial alpha

nextQuestionLabel.alpha = 0

h

@IBAction func showNextQuestion(_ sender: UIButton) {
currentQuestionIndex += 1
if currentQuestionIndex == questions.count {
currentQuestionIndex = 0
b

let question: String = questions[currentQuestionIndex]

nextQuestionLabel.text = question
answerLabel.text = "?7?"

animatelLabelTransitions()

h

Now update animateLabelTransitions() to animate the alpha of the two labels. You will fade out the
currentQuestionLabel and fade in the nextQuestionLabel simultaneously.

func animatelLabelTransitions() {

// Animate the alpha
UIView.animate(withDuration: 0.5, animations: {

self.currentQuestionLabel.alpha = 0
self.nextQuestionLabel.alpha = 1
1)

147

Chapter 8 Controlling Animations

Open Main.storyboard. Now that the code has been updated for these two labels, you need to make
the connections. Control-click on the View Controller to see a list of connections. Notice that the
existing questionLabel is still present with a yellow warning sign next to it (Figure 8.3). Click on the x
to remove this connection.

Figure 8.3 Missing connection

Quiz View Controller
Triggered Segues
Outlets
answerlLabel * Answer Label
currentQuestionLabel
nextQuestionLabel
questionLabel * Question Label
searchDisplayController
view View
Presenting Segues
Referencing Outlets
New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection
Received Actions
showAnswer: * Show Answer
Touch Up Inside
showQuestion: * Next Question
Touch Up Inside

oe00®

Connect the currentQuestionLabel outlet to the existing question label by dragging from the circle next
to currentQuestionLabel to the label on the canvas.

Now drag a new Label onto the interface and position it next to the existing question label. Connect the
nextQuestionLabel to this new label.

You want this label to be in the same position as the existing question label. As you have likely
guessed, the best way to achieve this is through constraints. Control-drag from the nextQuestionLabel
to the currentQuestionLabel and select Top. Then Control-drag upward from the nextQuestionLabel to
its superview and select Center Horizontally in Container.

At this point, nextQuestionLabel is misplaced. Select the label, open the Resolve Auto Layout Issues
menu, and select Update Frames. The labels will now be on top of one another.

Build and run the application. Tap the Next Question button and you will see a graceful fade for both of
the labels.

If you tap it again, however, no fade occurs because the nextQuestionLabel already has an alpha

of 1. To fix this, you will swap the references to the two labels. When the animation completes, the
currentQuestionLabel needs to be set to the onscreen label, and the nextQuestionLabel needs to be
set to the offscreen label. You will use a completion handler on the animation to accomplish this.

148

Animation Completion

Animation Completion

The method animate (withDuration:animations:) returns immediately. That is, it starts the
animation, but it does not wait for the animation to complete. What if you want to know when an
animation completes? For instance, you might want to chain animations together or update another
object when the animation completes. To know when the animation finishes, pass a closure for the
completion argument. You will use this opportunity to swap the two label references.

In ViewController.swift, update animateLabelTransitions() to use the UIView animation method
that has the most parameters, including one that takes in a completion closure.

func animatelLabelTransitions() {

// Animate the alpha
UHiew—animatefwithDuration—0-5—animatiens+—Ff
setf-eurrentQuestiontabel-—alpha—="~0
setfrextQuestiontabel—atpha——1
H
UIView.animate(withDuration: 0.5,
delay: 0,
options: [1],
animations: {
self.currentQuestionLabel.alpha = 0
self.nextQuestionLabel.alpha = 1

H
completion: { _ in
swap (&self.currentQuestionLabel,
&self.nextQuestionLabel)

b
b

The delay indicates how long the system should wait before triggering the animation. We will talk
about the options later in this chapter. For now, you are passing in an empty array.

In the completion closure, you need to tell the system that what used to be the currentQuestionLabel
is now the nextQuestionLabel and that what used to be the nextQuestionLabel is now the
currentQuestionLabel. To accomplish this, you use the swap(_:_:) function, which accepts two
references and swaps them.

Build and run the application. Now you are able to transition between all of the questions.

Animating Constraints

In this section, you are going to extend your animation to have the nextQuestionLabel property fly in
from the left side of the screen and the currentQuestionLabel fly out to the right side of the screen
when the user presses the Next Question button. In doing so, you will learn how to animate constraints.

First, you need a reference to the constraints that need to be modified. So far, all of your @IBOutlets
have been to view objects. But outlets are not limited to views — in fact, any object in your interface file
can have an outlet, including constraints.

149

Chapter 8 Controlling Animations

At the top of ViewController.swift, declare two outlets for the two labels’ centering constraints.

@IBOutlet var currentQuestionLabel: UILabel!

@IBOutlet var currentQuestionLabelCenterXConstraint: NSLayoutConstraint!
@IBOutlet var nextQuestionLabel: UILabel!

@IBOutlet var nextQuestionLabelCenterXConstraint: NSLayoutConstraint!
@IBOutlet var answerlLabel: UILabel!

Now open Main.storyboard. You want to connect these two outlets to their respective constraints.
The easiest way to accomplish this is using the document outline. Click the disclosure triangle

next to Constraints in the document outline and locate Current Question Label CenterX Constraint.
Control-drag from the View Controller to that constraint (Figure 8.4) and select the correct outlet. Do
the same for Next Question Label CenterX Constraint.

Figure 8.4 Connecting a constraint outlet

20 »p /A Quiz) B iPhone 7 Quiz | Build Quiz: Succeeded | Today at 11:12 AM

Q| < J| BT
g8 < B quiz Quiz Main.storyboard Main.storyboard (Base)) [5] View Controller Scene View Controller

v [5] view Controller Scene

v () View Controller (P—
Top Layout Guide Q W=
Bottom Layout Guide -
v View
L | Current Question Label
B Next Question Lasl

L | Answer Label
B Show Answer
L | Next Question Label
v (@ constraints
(_ [Current Question Label CenterX Constraint_«)
(8 current Question Label.top = Top Layout Gu...
(@B show Answer.centerX = centerX
(8 show Answer.top = Answer Label.bottom +
(8 Next Question.top = Top Layout Guide.botto...
BB Next Question.centerX = centerX
B Answer Label.centerX = centerx
(8 Answer Label.top = Next Question.bottom +...
(BB Next Question Label CenterX Constraint
(@ Next Question Label.top = Current Question...
3 First Responder
[E Exit
Storyboard Entry Point

Next Question

Show Answer

® Filter L] View as: iPhone 7 (wC rR) — 100% -+ & ol kAl

Currently, the Next Question button and the answer subviews have their center X constrained to the
center X of the currentQuestionLabel. When you implement the animation for this label to slide
offscreen, the other subviews will go with it. This is not what you want.

Select the constraint that centers the X value of the Next Question button to the
currentQuestionLabel and delete it. Then Control-drag upward from the Next Question button to its
superview and select Center Horizontally in Container.

150

Animating Constraints

Next, you want the two question labels to be one screen width apart. The center of nextQuestionLabel
will be half of the screen width to the left of the view. The center of the currentQuestionLabel will be
at its current position, centered in the screen.

When the animation is triggered, both labels will move a full screen width to the right, placing the
nextQuestionLabel at the center of the screen and the currentQuestionLabel half a screen width to
the right of the screen (Figure 8.5).

Figure 8.5 Sliding the labels

Before animation

After animation

Screen width

Screen width

To accomplish this, when the view of ViewController is loaded, you need to move the
nextQuestionLabel to its offscreen position.

In ViewController.swift, add a new method and call it from viewDidLoad().

func viewDidLoad() {
super.viewDidLoad()
currentQuestionLabel.text = questions[currentQuestionIndex]

updateOffScreenLabel()
¥

func updateOffScreenLabel() {

let screenWidth = view.frame.width
nextQuestionLabelCenterXConstraint.constant = -screenWidth

151

Chapter 8 Controlling Animations

Now you want to animate the labels to go from left to right. Animating constraints is a bit different
than animating other properties. If you modify the constant of a constraint within an animation block,
no animation will occur. Why? After a constraint is modified, the system needs to recalculate the
frames for all of the related views in the hierarchy to accommodate this change. It would be expensive
for any constraint change to trigger this automatically. (Imagine if you updated quite a few constraints
— you would not want it to recalculate the frames after each change.) So you must ask the system to
recalculate the frames when you are done. To do this, you call the method layoutIfNeeded() on a
view. This will force the view to lay out its subviews based on the latest constraints.

In ViewController.swift, update animateLabelTransitions() to change the constraint constants
and then force the layout of the views.

func animatelLabelTransitions() {

// Animate the alpha

// and the center X constraints

let screenWidth = view.frame.width
self.nextQuestionLabelCenterXConstraint.constant = 0
self.currentQuestionLabelCenterXConstraint.constant += screenWidth

UIView.animate(withDuration: 0.5,
delay: 0,
options: [1,
animations: {
self.currentQuestionLabel.alpha = 0
self.nextQuestionLabel.alpha = 1

self.view.layoutIfNeeded()
H
completion: { _ in
swap (&self.currentQuestionLabel,
&self.nextQuestionLabel)

o)

152

Animating Constraints

Finally, in the completion handler, you need to swap the two constraint outlets and reset the
nextQuestionLabel to be on the left side of the screen.

func animatelLabelTransitions() {

// Animate the alpha

// and the center X constraints

let screenWidth = view.frame.width
self.nextQuestionLabelCenterXConstraint.constant = 0
self.currentQuestionLabelCenterXConstraint.constant += screenWidth

UIView.animate(withDuration: 0.5,
delay: 0,
options: [1,
animations: {
self.currentQuestionLabel.alpha = 0
self.nextQuestionLabel.alpha =1

self.view. layoutIfNeeded()
I
completion: { _ in
swap(&self.currentQuestionLabel,
&self.nextQuestionLabel)
swap (&self.currentQuestionLabelCenterXConstraint,
&self.nextQuestionLabelCenterXConstraint)

self.updateOffScreenLabel()

1)
b

Build and run the application. The animation works almost perfectly. The labels slide on and off the
screen, and the alpha value animates appropriately as well.

153

Chapter 8 Controlling Animations

There is one small problem to fix, but it can be a bit difficult to see. To see it more easily, turn on Slow
Animations from the Debug menu in the simulator (Command-T). The width of all of the labels gets
animated (to see this on the answerLabel, you need to click the Show Answer button). This is because
the intrinsic content size changes when the text changes. The fix is to force the view to lay out its
subviews before the animation begins. This will update the frames of all three labels to accommodate
the next text before the alpha and sliding animations start.

Update animateLabelTransitions () to force the view to lay out its subviews before the animation
begins.

func animatelLabelTransitions() {

// Force any outstanding layout changes to occur
view.layoutIfNeeded()

// Animate the alpha

// and the center X constraints

let screenWidth = view.frame.width
self.nextQuestionLabelCenterXConstraint.constant = 0
self.currentQuestionLabelCenterXConstraint.constant += screenWidth

UIView.animate(withDuration: 0.5,
delay: 0,
options: [1,
animations: {
self.currentQuestionLabel.alpha = 0
self.nextQuestionLabel.alpha = 1

self.view.layoutIfNeeded()
H
completion: { _ in
swap(&self.currentQuestionLabel,
&self.nextQuestionLabel)
swap(&self.currentQuestionLabelCenterXConstraint,
&self.nextQuestionLabelCenterXConstraint)

self.update0OffScreenLabel()
1)
}

Build and run the application and cycle through some questions and answers. The minor animation
issue is now resolved.

Timing Functions

The acceleration of the animation is controlled by its timing function. By default, animations use an
ease-in/ease-out timing function. To use a driving analogy, this would mean the driver accelerates
smoothly from rest to a constant speed and then gradually slows down at the end, coming to rest.

Other timing functions include linear (a constant speed from beginning to end), ease-in (accelerating
to a constant speed and then ending abruptly), and ease-out (beginning at full speed and then slowing
down at the end).

154

Timing Functions

In ViewController.swift, update the animation in animateLabelTransitions() to use a linear
timing function.

UIView.animate(withDuration: 0.5,
delay: 0,
options: [.curvelLinear],
animations: {
self.currentQuestionLabel.alpha = 0
self.nextQuestionLabel.alpha = 1

self.view. layoutIfNeeded()
1
completion: { _ in
swap(&self.currentQuestionLabel,
&self.nextQuestionLabel)
swap(&self.currentQuestionLabelCenterXConstraint,
&self.nextQuestionLabelCenterXConstraint)

self.update0ffScreenLabel()
1)

Now, as opposed to using the default ease-in/ease-out animation curve, the animation will have a linear
animation curve. Build and run the application. The difference is subtle, but it is noticeable if you
watch for it.

The options parameter takes in a UIViewAnimationOptions argument. Why is this argument in square
brackets? There are many options for an animation in addition to the timing function. Because of this,
you need a way of specifying more than one option — an array. UIViewAnimationOptions conforms to
the OptionSet protocol, which allows you to group multiple values using an array.

Here are some of the possible animation options that you can pass into the options parameter.

Animation curve options

Control the acceleration of the animation. Possible values are:

* UIViewAnimationOptions.curveEaseInQut

* UIViewAnimationOptions.curveEaseln

* UIViewAnimationOptions.curveEaseOut

* UIViewAnimationOptions.curvelLinear
UIViewAnimationOptions.allowUserInteraction

By default, views cannot be interacted with when animating. Specifying this option overrides

the default. This can be useful for repeating animations, such as a pulsing view.
UIViewAnimationOptions.repeat

Repeats the animation indefinitely; often paired with the

UIViewAnimationOptions.autoreverse option.
UIViewAnimationOptions.autoreverse

Runs the animation forward and then backward, returning the view to its initial state.

Be sure to check out the Constants section of the UIView Class Reference to see all of the possible
options.

155

Chapter 8 Controlling Animations

Bronze Challenge: Spring Animations

i0S has a powerful physics engine built in. An easy way to harness this power is by using a spring
animation.

// UIView

class func animate(withDuration duration: TimeInterval,
delay: TimeInterval,
usingSpringWithDamping dampingRatio: CGFloat,
initialSpringVelocity velocity: CGFloat,
options: UIViewAnimationOptions,
animations: () -> Void,
completion: ((Bool) —> Void)?)

Use this method to have the two labels animate on and off the screen in a spring-like fashion. Refer to
the UIView documentation to understand each of the arguments.

Silver Challenge: Layout Guides

If you rotate into landscape, the nextQuestionLabel becomes visible. Instead of hardcoding the
spacing constraint’s constant, use an instance of UILayoutGuide to space the two labels apart. This
layout guide should have a width constraint equal to the ViewController’s view to ensure that the
nextQuestionLabel remains offscreen when not animating.

156

Debugging

As you write an application, you will inevitably make mistakes. Even worse, from time to time you
will have errors in your application’s design. Xcode’s debugger (called LLDB) is the fundamental
tool that will help you find these bugs and fix them. This chapter gives you an overview of Xcode’s
debugger and its basic functions.

A Buggy Project

You will use a simple project to guide you through your exploration of the Xcode debugger. Open
Xcode and create a new project for an iOS single view application. Name the project Buggy and make
sure Language is set to Swift, Devices is set to iPhone, and Use Core Data, Include Unit Tests, and
Include Ul Tests are all unchecked (Figure 9.1). Click Next.

Figure 9.1 Configuring Buggy

Choose options for your new project:

Product Name: = Buggy
Team: Big Nerd Ranch, Inc (Enterprise) u
Organization Name: Big Nerd Ranch
Organization Identifier: com.bignerdranch

Bundle Identifier: com.bignerdranch.Buggy

Language: = Swift [T
Devices: iPhone a
Use Core Data
Include Unit Tests
Include Ul Tests
Cancel Previous QNI

As you write this application’s code, keep in mind that it is a buggy project. You may be asked to
type code you know is incorrect. Do not fix it as you type it in; those errors will help you learn about
debugging techniques.

157

Chapter 9 Debugging

To get started, open Main.storyboard and drag a UIButton onto the View Controller Scene.
Double-click on the new button and change its title to “Tap me!” With the button still selected, open
the Auto Layout Align menu. Check Horizontally in Container and click Add 1 Constraint. Next, open
the Add New Constraints menu. Pin the distance to the top of the container, check the Width and Height
boxes, and click Add 3 Constraints.

Your results should look something like Figure 9.2, but do not worry if your actual dimensions and
spacing are a bit different.

Figure 9.2 Auto Layout constraints for the Tap me! button

B« 2 Buggy Buggy Main.storyboard Main.storyboard (Base)) [=] View Controller Scene View Controller View) B Button o @ T+ B ©
v 5] view Controller Scene View
v () View Controller ® B Show Frame Rectangle B
Top Layout Guide () 273 T n3 C
Bottom Layout G... X 7
v View 550 30 C
v [B]Button Width Height
» (B Constraints
. Arrange _Position View | V]
» (@ Constraints
l)‘ First Responder o Layout Margins Default “
= Exil Gap|meb
[Exit oan Preserve Superview Margins
Storyboard Entry Pol... [Follow Readable Width
Constraints
—
D This Size Class
BB Aign Center X to: Edit
® Width Equals: 55 Edit
(] Height Equals: 30 Edit
a8 Top Space to: Top Layout.. g
Equals: 93

Now you need to implement a method for this button to trigger and then connect it to the button in the
storyboard.

Open ViewController.swift and implement an action method for the button to trigger.
@IBAction func buttonTapped(_ sender: UIButton) {
}

Now open Main.storyboard and Control-drag from the button to the View Controller and connect it to
the buttonTapped: option.

Back in ViewController.swift, add a print() statement to the buttonTapped(_:) method to
confirm that the method is called in response to a button tap.

@IBAction func buttonTapped(_ sender: UIButton) {
print("Called buttonTapped(_:)")

Build and run the application. Make sure the button is correctly displayed on the screen and that you
can tap it. Also confirm that the Called buttonTapped(_:) message prints to the console when you
tap the button.

158

Debugging Basics

Debugging Basics

The simplest debugging uses the console. Interpreting the information provided in the console when an
application crashes or intentionally logging information to the console allows you to observe and zero
in on your code’s failures. Let’s look at some examples of how the console can support your quest for
bug-free code.

Interpreting console messages

Time to add some mayhem to the Buggy project. Suppose that after considering the Ul for a while, you
decide that a switch would be a better control than a button. Open ViewController.swift and make
the following changes to the buttonTapped(_:) method.

eIBAction—fure—buttonfapped—sender—UIButtom—t
@IBAction func switchToggled(_ sender: UISwitch) {
print("Called buttonTapped(_:)")

You renamed the action to reflect the change of control and you changed the type of sender to
UISwitch.

Unfortunately, you forgot to update the interface in Main.storyboard. Build and run the application,
then tap on the button. The application will crash and you will see a message logged to the console
similar to the one on the next page. (We have truncated some of the information to fit on the page.)

159

Chapter 9 Debugging

2016-08-24 12:52:38.463 Buggy[1961:47078] -[Buggy.ViewController buttonTapped:]:
unrecognized selector sent to instance 0x7ff6db708870

2016-08-24 12:52:38.470 Buggy[1961:47078] *** Terminating app due to uncaught
exception 'NSInvalidArgumentException',

reason: '—[Buggy.ViewController buttonTapped:]: unrecognized selector sent to
instance 0x7ff6db708870"

**% First throw call stack:

(

14 CoreFoundation
15 CoreFoundation
16 CoreFoundation
17 CoreFoundation
18 GraphicsServices

__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE@_PERFORM_FUNCTION
__CFRunLoopDoSources@ + 556

__CFRunLoopRun + 918

CFRunLoopRunSpecific + 420

GSEventRunModal + 161

@ CoreFoundation [] __exceptionPreprocess + 171
1 libobjc.A.dylib [] objc_exception_throw + 48
2 CoreFoundation [...] —[NSObject(NSObject) doesNotRecognizeSelector:] + 132
3 CoreFoundation [] _ forwarding___ + 1013
4 CoreFoundation [] _CF_forwarding_prep_0 + 120
5 UIKit [...] -[UIApplication sendAction:to:from:forEvent:] + 83
6 UIKit [...] -[UIControl sendAction:to:forEvent:] + 67
7 UIKit [...] —[UIControl _sendActionsForEvents:withEvent:] + 444
8 UIKit [...] -[UIControl touchesEnded:withEvent:] + 668
9 UIKit [...] -[UIWindow _sendTouchesForEvent:] + 2747
10 UIKit [...] -[UIWindow sendEvent:] + 4011
11 UIKit [...] —[UIApplication sendEvent:] + 371
12 UIKit [] __dispatchPreprocessedEventFromEventQueue + 3248
13 UIKit [] __handleEventQueue + 4879
[...]
[...]
[...]
[...]
[...]
19 UIKit [...] UIApplicationMain + 159

20 Buggy [...] main + 111

21 libdyld.dylib [...] start + 1

)
libc++abi.dylib: terminating with uncaught exception of type NSException

The message in the console looks pretty scary and hard to understand, but it is not as bad as it first
seems. The really useful information is at the very top. Let’s start with the very first line.

2016-08-24 12:52:38.463 Buggy[1961:47078] -[Buggy.ViewController buttonTapped:]:
unrecognized selector sent to instance 0x7ff6db708870

There is a time stamp, the name of the application, and the statement unrecognized selector sent
to instance 0x7ff6db708870. To make sense of this information, remember that an iOS application
may be written in Swift, but it is still built on top of Cocoa Touch, which is a collection of frameworks
written in Objective-C. Objective-C is a dynamic language, and when a message is sent to an instance,
the Objective-C runtime finds the actual method to be called at that precise time based on its selector, a
kind of ID.

Thus, the statement that an unrecognized selector [was] sent to instance 0x7ff6db708870
means that the application tried to call a method on an instance that did not have it.

Which instance was it? You have two pieces of information about it. First, it is a
Buggy.ViewController. (Why not just ViewController? Swift namespaces include the name of
the module, which in this case is the application’s name.) Second, it is located at memory address
0x7ff6db708870 (your actual address will likely be different).

160

Interpreting console messages

The expression - [Buggy.ViewController buttonTapped:] is a representation of Objective-C code. A
message in Objective-C is always enclosed in square brackets in the form [receiver selector]. The
receiver is the class or instance to which the message is sent. The dash (-) before the opening square
bracket indicates that the receiver is an instance of ViewController. (A plus sign (+) would indicate
that the receiver was the class itself.)

In short, this line from the console tells you that the selector buttonTapped: was sent to an instance of
Buggy.ViewController but it was not recognized.

The next line of the message adds the information that the app was terminated due to an “uncaught
exception” and specifies the type of the exception as NSInvalidArgumentException.

The bulk of the console message is the stack trace, a list of all the functions or methods that were
called up to the point of the application crash. Knowing which logical path the application took before
crashing can help you reproduce and fix a bug. None of the calls in the stack trace had a chance to
return, and they are listed with the most recent call on top. Here is the stack trace again:

*x*k First throw call stack:

(

14 CoreFoundation
15 CoreFoundation
16 CoreFoundation
17 CoreFoundation
18 GraphicsServices
19 UIKit

20 Buggy

21 libdyld.dylib

_ CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE@_PERFORM_FUNCTION
__CFRunLoopDoSources@ + 556

__CFRunLoopRun + 918

CFRunLoopRunSpecific + 420

GSEventRunModal + 161

UIApplicationMain + 159

main + 111

start + 1

0 CoreFoundation [...] __exceptionPreprocess + 171
1 libobjc.A.dylib [...] objc_exception_throw + 48
2 CoreFoundation [...] -INSObject(NSObject) doesNotRecognizeSelector:] + 132
3 CoreFoundation [...] __ forwarding___ + 1013
4 CoreFoundation [...] _CF_forwarding_prep_0 + 120
5 UIKit [...] —[UIApplication sendAction:to:from:forEvent:] + 83
6 UIKit [...] —-[UIControl sendAction:to:forEvent:] + 67
7 UIKit [...] —[UIControl _sendActionsForEvents:withEvent:] + 444
8 UIKit [...] —[UIControl touchesEnded:withEvent:] + 668
9 UIKit [...] -[UIWindow _sendTouchesForEvent:] + 2747
10 UIKit [...] -[UIWindow sendEvent:] + 4011
11 UIKit [...] —[UIApplication sendEvent:] + 371
12 UIKit [...] __dispatchPreprocessedEventFromEventQueue + 3248
13 UIKit [...] __handleEventQueue + 4879
[...]
[...]
[...]
[...]
[...]
[...]
[...]
[...]

)

Each row in the list includes a call number, the module name, a memory address (which we have
removed to fit the rest on the page), and a symbol representing the function or method. If you scan the
stack trace from the bottom up, you can get a sense that the application starts in the main function of
Buggy at the line identified with call number 20, receives an event recognized as a touch at call number
9, and then tries to send the corresponding action to the button’s target at call number 7. The selector
for the action is not found (call number 2: - [NSObject (NSObject) doesNotRecognizeSelector:]),
resulting in an exception being raised (call number 1: objc_exception_throw).

Although this breakdown of the console message is specific to one error type out of many possibilities,
understanding the basic structure of these messages will help you make sense of the error messages
you will encounter in the future. As you gain more experience, you will start associating error
messages with types of problems and you will become better at debugging code.

161

Chapter 9 Debugging

Fixing the first bug

Reviewing ViewController.swift, you discover that you changed your action method from
buttonTapped(_:) to switchToggled(_:), which is why the selector buttonTapped: is not being
recognized.

To fix the bug, you have two choices. You could update the action connected to the button on
Main.storyboard to match your new action method. Or you could revert the name change on

the switchToggled(_:) method. You decide that you do not want a switch after all, so open
ViewController.swift and change your method back to its earlier implementation. (Remember what
we told you: Make the changes exactly as shown, even if you see a problem.)

@IBAction func buttonTapped(__sender: UISwitch) {
print("Called buttonTapped(_:)")
b

Build and run the application. It works fine ... or does it? Actually, there is a problem, which you will
resolve in the next section.

Caveman debugging

The current implementation of ViewController’s buttonTapped(_:) method just logs a statement to
the console. This is an example of a technique that is fondly called caveman debugging: strategically
placing print() calls in your code to verify that functions and methods are being called (and called in
the proper sequence) and to log variable values to the console to keep an eye on important data.

Like the cavemen in the insurance commercials, caveman debugging is not as outmoded as the name
might suggest, and modern developers continue to rely on messages logged to the console.

To explore what caveman debugging can do for you, log the state of the sender control when
buttonTapped(_:) is called in ViewController.swift.

@IBAction func buttonTapped(_ sender: UISwitch) {
print("Called buttonTapped(_:)")
// Log the control state:
print("Is control on? \(sender.isOn)")

}

In the @IBAction methods you have written throughout this book, you have been passing in an
argument called sender. This argument is a reference to the control sending the message. A control is a
subclass of UIControl; you have worked with a few UIControl subclasses so far, including UIButton,
UITextField, and UISegmentedControl. As you can see in buttonTapped(_:)’s signature, the sender
in this case is an instance of a UISwitch. The isOn property is a Boolean indicating whether the switch
instance is in the on state or not.

Build and run the application. Try tapping the button. Oops! You have an unrecognized selector error
again.

Called buttonTapped(_:)

2016-08-30 09:30:57.730 Buggy[9738:1177400] —-[UIButton isOn]:

unrecognized selector sent to instance 0x7fcc5d104cd@

2016-08-30 09:30:57.734 Buggy[9738:1177400] *** Terminating app due to uncaught
exception 'NSInvalidArgumentException', reason: '-[UIButton isOn]: unrecognized
selector sent to instance 0x7fcc5d104cdo’

162

Caveman debugging

The console message begins with the Called buttonTapped(_:) line, indicating that the action was
indeed called. But then the application crashes because the isOn selector is sent to an instance of a
UIButton

You can probably see the problem: sender is typed as a UISwitch in buttonTapped(_:), but the action
is actually attached to a UIButton instance in Main.storyboard.

To confirm this hypothesis, log the address of sender in ViewController.swift, just before you call
the is0On property.

@IBAction func buttonTaped(_ sender: UISwitch) {
print(“Called buttonTapped(_:)")
// Log sender:
print("sender: \(sender)")
// Log the control state:
print("Is control on? \(sender.isOn)")

b

Build and run the application one more time. After tapping the button and crashing the application,
check the first few lines of the console log, which will look something like this:

Called buttonTapped(_:)

sender: <UIButton: 0x7fcf8c508bb0; frame = (160 84; 55 30@); opaque = NO;

autoresize = RM+BM; layer = <CALayer: 0x618000220ea0>>

2016-08-30 09:45:00.562 Buggy[9946:1187061] -[UIButton isOn]: unrecognized selector
sent to instance 0x7fcf8c508bb0o

2016-08-30 09:45:00.567 Buggy[9946:1187061] *** Terminating app due to uncaught
exception 'NSInvalidArgumentException', reason: '—-[UIButton isOn]: unrecognized
selector sent to instance 0x7fcf8c508bb0’

In the line after Called buttonTapped(_:), you get information about the sender. As expected, it is an
instance of a UIButton and it exists in memory at address 0x7fcf8c508bb0. Further down the log you
can confirm that this is the same instance to which you are sending the isOn message. A button cannot
respond to a UISwitch property, so the app crashes.

To fix this problem, correct the buttonTapped(_:) definition in ViewController.swift. While you
are there, delete the extra calls to print (), which you will not need again.

@IBAction—func—buttonfaped{—sender—UISwiteh)—f

@IBAction func buttonTaped(_ sender: UIButton) {
print("Called buttonTapped(_:)")
++—teog—senders

+—teg—the—eontrot—stater

163

Chapter 9 Debugging

Swift has four literal expressions that can assist you in logging information to the console (Table 9.1):

Table 9.1 Literal expressions useful for debugging

Literal Type Value

#file String The name of the file where the expression appears.
#line Int The line number the expression appears on.

#column Int The column number the expression begins in.
#function |[String The name of the declaration the expression appears in.

To illustrate the use of these literal expressions, update your call to print() in the buttonTapped(_:)
method in ViewController.swift.

@IBAction func buttonTapped(_ sender: UIButton) {

printcatted—buttontapped—)")
print("Method: \(#function) in file: \(#file) line: \(#line) called.")

Build and run the application. As you tap the button, you will see a message logged to the console that
is equivalent to the one below.

Method: buttonTapped in file: /Users/juampa/Desktop/Buggy/Buggy/ViewController.swift
at line: 13 was called.

While caveman debugging is useful, be aware that print() statements are not stripped from your code
as you build your project for release.

The Xcode Debugger: LLDB

To continue your debugging experiments, you are going to add another bug to your application. Add
the code below to ViewController.swift. Notice that you will be using an NSMutableArray, the
Objective-C counterpart of Swift’s Array, to make the bug a little harder to find.

@IBAction func buttonTapped(_ sender: UIButton) {
print("Method: \(#function) in file: \(#file) line: \(#line) called.")

badMethod()
}

func badMethod() {
let array = NSMutableArray()

for i in 0..<10 {
array.insert(i, at: i)

}

// Go one step too far emptying the array (notice the range change):
for _ in 0...10 {
array.remove(at: 0)
}
}

Build and run the application to confirm that a tap on the button results in the application crashing with
an uncaught NSRangeException exception. Use your freshly acquired knowledge to study and interpret
the error message as much as possible.

164

Setting breakpoints

If you used a Swift Array type to create this bug, Xcode would have been able to highlight the line
of code that caused the exception. Because you used an NSMutableArray, the code that raised the
exception is deep within the Cocoa Touch framework. Frequently this is the case when debugging;
problems are not so obvious and you need to do some investigative work.

Setting breakpoints

Assume that you do not know the direct cause of the crash. You just know it happens after you tap the
application’s button. A reasonable way to proceed would be to stop the application after the button is
tapped and step through the code until you get a clue as to the problem.

Open ViewController.swift. To stop an application at a specified location in the code, you set a
breakpoint. The simplest way to set a breakpoint is to click on the gutter to the left of the editor pane
next to the line where you want execution to stop. Try it: Click to the left of the line @I BAction func
buttonTapped(_ sender: UIButton) {. A blue marker indicating the new breakpoint will appear
(Figure 9.3).

Figure 9.3 Setting a breakpoint

}

® 23 J @IBAction func buttonTapped(_ sender: UIButton) {
print("Method: \(#function) in file: \(#file) line: \(#line) called.")

badMethod()

After a breakpoint is set, you can toggle it by clicking on the blue marker directly. If you click on the
marker once, it will become disabled, indicated by a paler shade of blue (Figure 9.4).

Figure 9.4 Disabling a breakpoint

}

@IBAction func buttonTapped(_ sender: UIButton) {
print("Method: \(#function) in file: \(#file) line: \(#line) called.")

badMethod()

Another click re-enables the breakpoint. You can also enable, disable, delete, or edit a breakpoint by
Control-clicking on the marker. A contextual menu will appear, as shown in Figure 9.5.

Figure 9.5 Modifying a breakpoint

}

. . _ sender: UIButton) {
5 Edit Breakpoint... on) in file: \(#file) line: \(#line) called.")
2 Enable Breakpoint
Delete Breakpoint

3 Reveal in Breakpoint Navigator

3rgy Tevarray = wormutawvreacrray ()

165

Chapter 9 Debugging

Selecting Reveal in Breakpoint Navigator opens the breakpoint navigator in Xcode’s left pane with a list
of all the breakpoints in your application (Figure 9.6). You can also open the breakpoint navigator by
clicking its icon in the navigator selector.

Figure 9.6 The breakpoint navigator

E &N O = D Bl 88 < 5 Buggy Buggy) ViewController.swift) [[] badMethod()
v [Buggy 1 Breakpoint 11 class ViewController: UIViewController {
. o 12
v ViewController.swift . . N
& Ew o 13 override func viewDidLoad() {
buttonTapped(_:) line 23 = 1% super.viewDidLoad()
15 // Do any additional setup after loading the view, typically from a nib.
16 }
17
18 override func didReceiveMemoryWarning() {
19 super.didReceiveMemoryWarning()
20 // Dispose of any resources that can be recreated.
21 }
22
@IBAction func buttonTapped(_ sender: UIButton) {

2 print("Method: \(#function) in file: \(#file) line: \(#line) called.")
25
2 badMethod ()
27 }
2
29

Stepping through code

Make sure your breakpoint on the buttonTapped(_:) method is set and active after all the clicking you
did in the previous section. Run the application and tap on the button.

Your application hits the breakpoint and stops executing, and Xcode takes you to the line of code

that would be executed next, which is highlighted in green. It also opens some new information areas
(Figure 9.7).

Figure 9.7 Xcode stopped at a breakpoint

@ ® P> H /ABuggy) HiPhone7 Running Buggy on iPhone 7 =@ ® OO O
BRQAQAOEo B BL 1 Buggy) " Buggy) = ViewController.swift) () buttonTapped(_:)
v/ Buggy PID 1869 Q®

@IBAction func buttonTapped(_ sender: UIButton) {
% print("Method: \(#function) in file: \(#file) line: \(#line) called.")
Thread 1: breakpoint 1.1

@ cru 0%

badMethod ()

'
@ Network Zero KB/s

func badMethod() {
v) Thread 1 Queue: com...hread (serial) let array = NSMutableArray()
] 0 ViewController.buttonTapped(...

for i in 0..<10 {
array.insert(i, at: i)

o:

// Go one step too far emptying the array (notice the range change):
for _ in 0...10 {
array.remove(at: 0)

S ’ Debug Bar
1 o J
E®» > o L& 20 o Buggy) () Thread 1) [0 ViewController.buttonTapped(UiButton) -> () i
0x00007ff7ea5135c0 (11db) E
ntroller) 0x00007ff7ea4065d0 H
. :
® ZEE Ao ® Filte All Output & ® Filt i D|j|i
Variables View Console
Debug Navigator Debug Area Toggle Variables View Toggle Console

166

Stepping through code

You are familiar with the console and have already seen the debug navigator. The new areas here are
the variables view and the debug bar, which together with the console make up the debug area. (If you
cannot see the variables view, click on the L] icon on the bottom-right corner of the debug area.)

The variables view can help you discover the values of variables and constants within the scope of the
breakpoint. However, trying to find a particular value can require a fair amount of digging.

Initially, all you will see listed in the variables view are the sender and self arguments passed to
the buttonTapped (_:) method. Click on the disclosure triangle for sender, and you will see that it
contains a UIKit.UIControl property. Within it there is a _targetActions array that contains the
button’s attached target-action pairs.

Open the _targetActions array, open the first item ([0]), and then select the _target property. Tap
the space bar while _target is selected, and a Quick Look window will open, showing a preview of the
variable (which is an instance of ViewController). The Quick Look is shown in Figure 9.8.

Figure 9.8 Inspecting variables in the variables view

@0 @® » MW Abuggy) s iPhone? Running Buggy on iPhone 7 s | Q| O 2O
B2 QAo =Eop 8 |#H< B8 _target Open With Preview
v 7 Buggy PID 3153 Qo : over
@ cpu 0% view, typically from a nib.
¥
£ Memory 453 MB
ot over
[) pisk Zero KB/s
v
@ Network ZerokBjs | - pated.

v () Thread 1 Queue: c d (seria 22 |
m (© 23 J @IBA L
0 ViewController.buttonTapped(... ; .
) FY Cl¥lewCon roy%r o appé(I line: \(#line) called.")

|29 : Thread 1: breakpoint 1.1
) tion send o 9
8] ol sendAction:to:forE 2 ¥
- cen :
ot = » > - ‘Controller.buttonTapped(UIButton) -> ()
Os trol touches|
- v [sender = (Ul
(] ndo dT -

¥ UIKit.UIContr
m E t
o) > baseUIVier
Os ' e ! ¥ _targetAct

vI01= (U

O > NSO

» _actic

_ever

_canc

_downTime

= > [self = (Bugay

O3 17 Uiapplicationia
P 18 main

art

@

TRE|| Ao © O @ Filt gy {|

In the same section as the _target, you will see the _selector. Next to it, you will see (SEL)
"buttonTapped:". The (SEL) indicates that this is a selector, and "buttonTapped:" is the name of the
selector.

In this contrived example, it does not help you much to dig to find the _target and the _action;
however, once you start working with larger, more complex applications, it can be especially useful
to use the variables view. You do need to know what you are looking for, such as the _target and the
_action — but finding the value that you are interested in can be very helpful in tracking down bugs.

167

Chapter 9 Debugging

Now it is time to start advancing through the code. You can do this using the buttons on the debug bar,
shown in Figure 9.9.

Figure 9.9 The debug bar

Toggle debug
area
Deactivate

/ breakpoints

» > & L 2|Mh o <« Buggy) () Thread 1) [17 main
Continue program Step Step Step
execution over into out

The important buttons in the debug bar are:
¢ Continue program execution (I>) — resumes normal execution of the program
* Step over (&) — executes a single line of code without entering any function or method call
* Step into (%) — executes the next line of code, including entering a function or method call
* Step out (L) — continues execution until the current function or method is exited

Click the & button until you highlight the badMethod () line (do not execute this line). Note that you
do not step into the print() method — because it is an Apple-written method, you know there will be
no problems there.

With badMethod () highlighted, click the & button to step into the badMethod () method, and continue
stepping through the code with & until the application crashes. It will take you quite a few clicks, and
it will look like you are going through the same lines of code over and over — in fact, you are, as the
code loops over the ranges.

168

Stepping through code

As you step through the code, you can pause to mouseover i and array. remove to see their values
update (Figure 9.10).

Figure 9.10 Examining the value of a variable

@IBAction| func buttonTapped(_ sender: UIButton) {
2 print("Method: \(#function) in file: \(#file) line: \(#line) called.")

26 badMethod ()
¥

func badMethod() {
let array = NSMutableArray()

for i in 0..<10 {

34 ‘array.insert(i, at: i)

35D } Thread 1: step over

v 8 elements © 0O
> [0] = (_SwiftTypePreservingNSNumber *) Int(0)

> [1] = (_SwiftTypePreservingNSNumber *) Int(1)

e array (notice the range change):

> [6] = (_SwiftTypePreservingNSNumber *) Int(6)
> [7] = (_SwiftTypePreservingNSNumber *) Int(7)

> [2] = (_SwiftTypePreservingNSNumber *) Int(2)
» [3] = (_SwiftTypePreservingNSNumber *) Int(3)
» [4] = (_SwiftTypePreservingNSNumber *) Int(4)
» [5] = (_SwiftTypePreservingNSNumber *) Int(5)
.)
.)

Once the application crashes, you have confirmation that the crash occurs within the badMethod ()
method. With this knowledge you can now delete or disable the breakpoint at the func
buttonTapped(_ sender: UIButton) line.

To delete a breakpoint, Control-click it and select Delete Breakpoint. You can also delete a breakpoint
by dragging the blue marker out of the gutter, as shown in Figure 9.11.

Figure 9.11 Dragging a marker to delete the breakpoint

21 3
22
© 23 @IBAction func buttonTapped(_ sender: UIButton) {
r 24 print("Method: \(#function) in file: \(#file) line: \(#line) called.")
25
)| % badMethod ()
27 ¥

28
29

169

Chapter 9 Debugging

Occasionally, you want to be notified when a line of code is triggered, but you do not need any
additional information or for the application to pause when it hits that line. To accomplish this, you can
add a sound to a breakpoint and have it automatically continue execution after being triggered.

Add a new breakpoint at the array.insert(i, at: i) line of the badMethod() method. Then
Control-click on the marker and select Edit Breakpoint.... Click on the Add Action button and select
Sound from the pop-up menu. Finally, check the box to Automatically continue after evaluating actions
(Figure 9.12).

Figure 9.12 Enabling special actions

30 func badMethod() {

31 let array = NSMutableArray()

33 for 1 in 0..<10 {
array.insert(i, at: i)

5 1

ViewController.swift:34

Condition

Ignore |0 2| times before stopping
Action | Sound o) Tink + —

Options Automatically continue after evaluating actions
el

44

You have configured the breakpoint to make an alert sound instead of stopping execution every time
it is encountered. Run the application again and tap the button. You should hear a sequence of sounds,
and then the application will crash.

It seems the application is safely completing the for loop, but you need to be sure. Find and
Control-click your breakpoint marker again, selecting Edit Breakpoint... as before. In the editor pop-up,
click the + to the right of the sound action to add a new action.

170

Stepping through code

From the pop-up, select Log Message. In the Text field, enter Pass number %H (%H is the breakpoint hit
count, a reference to the number of times the breakpoint has been encountered). Finally, make sure the
Log message to console radio button is selected (Figure 9.13).

Figure 9.13 Assigning multiple actions to a breakpoint

30 func badMethod() {
31 let array = NSMutableArray()
33 for 1 in @..<10 {
array.insert(i, at: i)
5 }

ViewController.swift:34

Condition
Ignore (0 | times before stopping
Action | Sound o)) Tink G =

Log Message + —

Pass number %H

° Log message to console @exp@ = expression
Speak message %B = breakpoint name

%H = breakpoint hit count

Options Automatically continue after evaluating actions

52

Run the application again and tap the button. You will hear the sequence of sounds again, and

the application will crash as before. But this time, if you watch the console (or scroll up after the
application crashes), you will see that the breakpoint was encountered 10 times. This confirms that
your code is completing the loop safely.

171

Chapter 9 Debugging

Delete your current breakpoint and add a new one on the line array.remove(at: @). Edit the
breakpoint to log the pass number and continue automatically, as before (Figure 9.14).

Figure 9.14 Adding a logging breakpoint

31 let array = NSMutableArray()

33 for i in @..<10 {
array.insert(i, at: i)

// Go one step too far emptying the array (notice the range change):

38 for _ in 0...10 {
39 array.remove(at: 0)
Q }

ViewController.swift:39
Condition | |

Ignore |0 C times before stopping

Action | Log Message < + —
Pass number %H
° Log message to console @exp@ = expression
Speak message %B = breakpoint name

%H = breakpoint hit count

Options Automatically continue after evaluating actions

55

Run the application and tap the button. When it crashes, scroll up in the console and you will see

that the second breakpoint was encountered 11 times. That is one time too many, and you have your
smoking gun. It also explains the NSRangeException logged on the console as the application crashes.
Carefully read the crash log on the console again and make as much sense of it as possible.

172

Stepping through code

Before fixing the problem, take the time to explore a couple more debugging strategies. First, disable
or delete any remaining breakpoints in the application.

In these simple examples, you have known just where to look to find the bug in your code, but in real-
world development you will often have no idea where in your application a bug is hiding. It would be
nice if you could tell which line of code is causing an uncaught exception resulting in a crash.

It would be nice — and with an exception breakpoint, you can do just that. Open the breakpoint
navigator and click on the + in the lower-left corner of the window. From the contextual menu, select
Exception Breakpoint.... A new exception breakpoint is created and a pop-up appears. Make sure it
catches all exceptions on throw, as shown in Figure 9.15.

Figure 9.15 Adding an exception breakpoint

B 2 Q A & == b B B < & Buggy Buggy) » ViewController.swift) [} buttonTe
v [B) Buggy 3 Breakpoints (2 disabled) B override func viewbidLoad() {
i I 14 super.viewDidLoad()
v 8 ViewController.swift 15 // Do any additional setup after loading the v
[badMethod() line 34 i ¥
@]badMethod() line 38 18 override func didReceiveMemoryWarning() {

e " 19 super.didReceiveMemoryWarning()
Ex All Exceptions 20 // Dispose of any resources that can be recrea

na 1

Exception Breakpoint
. inTapped (_ sender: UIButton) {
Exception [All {(#function) in file: \(#file)

Break | On Throw
Action Add Action

Options Automatically continue after evaluating actions

oU TUrNc paumMeLwnoul;) 1

3 let array = NSMutableArray()
32

33 for 1 in 0..<10 {

Run the application and tap the button once again. The application automatically stops and Xcode takes
you to the line that directly causes the exception to be raised. Note, however, that there is no console
log. That is because the application has not crashed yet. To see the crash and read the cause, click on
the [> button on the debug bar until you see the crash.

This strategy is the one to begin with as you tackle a new bug. In fact, many programmers always
keep an exception breakpoint active while developing. Why did we make you wait so long to use it?
Because if you had started with an exception breakpoint, you would not have needed to learn about
the other debugging strategies, and they have their uses, too. Feel free to remove this breakpoint if you
would like; you will not need it again.

173

Chapter 9 Debugging

You are going to try one final technique: the symbolic breakpoint. These are breakpoints specified not
by line number, but by the name of a function or method, referred to as a symbol. Symbolic breakpoints
are triggered when the symbol is called — whether the symbol is in your code or in a framework for
which you have no code.

Add a new symbolic breakpoint in the breakpoint navigator by clicking the + button on the lower-
left corner and, from the contextual menu, selecting Symbolic Breakpoint.... In the pop-up, specify
“badMethod” as the symbol, as shown in Figure 9.16. This means that every time badMethod () is
called, the application will stop.

Figure 9.16 Adding a symbolic breakpoint

B2 QA & Ep 8 B % Buggy Buggy) = ViewController.swift) No Selection
v [& Buggy 3 Breakpoints func badMethod() {
¥ 3 ViewController.swift 3 let array = NSMutableArray()
[badMethod() line 39 » ..
:lE (v » for i in @..<10 {
HEERES array.insert(i, at: i)
a8 »
@ symbolic Breakpoint tep too far emptying the array (notice the range change):

Symbol ' badMethod .
emove(at: @)
Module

Condition
Ignore |0 | { times before stopping
Action Add Action

Options (| Automatically continue after evaluating actions

Run the application to test the breakpoint. The application should stop at badMethod () after you tap the
Tap me! button.

In a real-world app, it is rare that you would use a symbolic breakpoint on a method that you created;
you would likely add a normal breakpoint like the ones you saw earlier in this chapter. Symbolic
breakpoints are most useful to stop on a method that you did not write, such as a method in one of
Apple’s frameworks. For example, you might want to know whenever the method loadView() is
triggered for any view controller within the application.

Finally, fix the bug.

func badMethod() {
let array = NSMutableArray()

for i in 0..<10 {
array.insert(i, at: i)
¥

-f-e-rTi:n—Oﬁ]:O—E

for _ in 0..<10 {
array.remove(at: 0)

}

174

The LLDB console

The LLDB console

A great feature of Xcode’s LLDB debugger is that it has a command-line interface. The console area
is not only used to read messages, but also can be used to type LLDB commands. The debugger
command-line interface is active whenever you see the blue (11db) prompt on the console.

Make sure your symbolic breakpoint on badMethod () is still active, run the application, and tap the
button to break at that point. Look at the console and you will see the (11db) prompt (Figure 9.17).
Click beside the prompt, and you can type commands.

Figure 9.17 The (1ldb) prompt on the console

Method: buttonTapped in file: /Users/juampa/Desktop/Buggy/
Buggy/ViewController.swift line: 24 called.
(11db)

All Output ¢ @ TEW |E||]|

One of the most useful LLDB commands is print-object, abbreviated po. This command prints a
nice description of any instance. Try it out by typing on the console.

(1ldb) po self
<Buggy.ViewController: @x7fae9852bf20>

The response to the command is that self is an instance of ViewController. Now advance one line
of code with the command step; this will initialize the array constant reference. Print the reference’s
value with po.

(1ldb) step

(1ldb) po array

0 elements

The response @ elements is not very useful, as it does not give you a lot of information. The print
command, abbreviated p, can be more verbose. Try it.

(1ldb) p array
(NSMutableArray) $R3 = 0x00007fae98517c00 "0 values" {}

Frequently, using the console with print or print-object to examine variables is much more
convenient than Xcode’s variables view pane.

175

Chapter 9 Debugging

Another useful LLDB command is expression, abbreviated expr. This command allows you to enter
Swift code to modify variables. For example, add some data to the array, look at the contents, and
continue execution.

(1ldb) expr array.insert(l, at: 0)

(1ldb) p array

(NSMutableArray) $R5 = 0x00007fae98517c00 "1 value" {
[0] = 0xb000000000000013 Int64(1)

(1ldb) po array
v 1 element

- [0] : 1
(1ldb) continue

Perhaps more surprisingly, you can also change the UI with LLDB expressions. Try changing the
button’s tintColor to red.

(1ldb) expr self.view.tintColor = UIColor.red
(1ldb) continue

There are many LLDB commands. To learn more, enter the help command at the (1ldb) prompt.

176

10

UlTableView and
UlTableViewController

Many iOS applications show the user a list of items and allow the user to select, delete, or reorder
items on the list. Whether an application displays a list of people in the user’s address book or a list of
best-selling items on the App Store, it is a UITableView doing the work.

A UITableView displays a single column of data with a variable number of rows. Figure 10.1 shows
some examples of UITableView.

Figure 10.1 Examples of UITableView

Carrier & 6:41PM - Carrier & 10:49 AM -
Groups All Contacts -+ (Settings ~ Photos & Camera
PHOTOS TAB
A
Summarize Photos O
John Appleseed
The Photos tab shows every photo in your library in all
B views. You can choose compact, summarized views for
Collections and Years.
Kate Bell
MEMORIES
H
Anna Haro Show Holiday Events O

You can choose to see holiday events for your home
country.

Daniel Higgins Jr.
T CAMERA
David Taylor Grid
z

Hank M. Zakroff

#HN<XS<CHAOTODVOZIrAc-—TIOTMMOO®W>

Beginning the Homepwner Application

In this chapter, you are going to start an application called Homepwner that keeps an inventory of all
your possessions. In the case of a fire or other catastrophe, you will have a record for your insurance
company. (“Homepwner,” by the way, is not a typo. If you need a definition for the word “pwn,” visit
www.wiktionary.org.)

177

https://www.wiktionary.org

Chapter 10 UlTableView and UlTableViewController

So far, your iOS projects have been small, but Homepwner will grow into a realistically complex
application over the course of eight chapters. By the end of this chapter, Homepwner will present a list
of I'tem instances in a UITableView, as shown in Figure 10.2.

Figure 10.2 Homepwner: phase 1

Carrier & 5:58 PM -

Rusty Bear
Fluffy Bear
Fluffy Spork $66
Shiny Mac $72

Fluffy Bear $40

To get started, open Xcode and create a new iOS Single View Application project. Configure it as shown
in Figure 10.3.

Figure 10.3 Configuring Homepwner

Product Name: = Homepwner

(<

Team: None

Organization Name: Big Nerd Ranch

Organization Identifier: ' com.bignerdranch
Bundle Identifier: com.bignerdranch.Homepwner

Language: Swift

(O)

Devices: Universal

Use Core Data
Include Unit Tests
Include Ul Tests

178

UlTableViewController

UlTableViewController

A UITableView is a view object. Recall that in the MVC design pattern, which iOS developers do their
best to follow, each class falls into exactly one of the following categories:

* model: holds data and knows nothing about the UI
* view: is visible to the user and knows nothing about the model objects
* controller: keeps the Ul and the model objects in sync and controls the flow of the application

As a view object, a UITableView does not handle application logic or data. When using a
UITableView, you must consider what else is necessary to get the table working in your application:

* A UITableView typically needs a view controller to handle its appearance on the screen.

* A UITableView needs a data source. A UITableView asks its data source for the number of
rows to display, the data to be shown in those rows, and other tidbits that make a UITableView
a useful UL Without a data source, a table view is just an empty container. The dataSource for
a UITableView can be any type of object as long as it conforms to the UITableViewDataSource
protocol.

* A UITableView typically needs a delegate that can inform other objects of events involving the
UITableView. The delegate can be any object as long as it conforms to the UITableViewDelegate
protocol.

An instance of the class UITableViewController can fill all three roles: view controller, data source,
and delegate.

UITableViewController is a subclass of UIViewController and therefore has a view.
A UITableViewController’s view is always an instance of UITableView, and the
UITableViewController handles the preparation and presentation of the UITableView.

When a UITableViewController creates its view, the dataSource and delegate properties of the
UITableView are automatically set to point at the UITableViewController (Figure 10.4).

Figure 10.4 UITableViewController-UITableView relationship

! UlTableViewDataSource | i- UlTableViewDelegate :

> v
dat_e_lﬁgqr_c_:e conformsto conforms to
UlTableView |--=""...--delegate ... : UlTableViewController
——view
tableView

179

Chapter 10 UlTableView and UlTableViewController

Subclassing UlTableViewController

You are going to implement a subclass of UITableViewController for Homepwner. Create
a new Swift file named ItemsViewController. In ItemsViewController.swift, define a
UITableViewController subclass named ItemsViewController.

import UIKit
class ItemsViewController: UITableViewController {

}

Now open Main.storyboard. You want the initial view controller to be a table view controller. Select
the existing View Controller on the canvas and press Delete. Then drag a Table View Controller from the
object library onto the canvas. With the Table View Controller selected, open its identity inspector and
change the class to ItemsViewController. Finally, open the attributes inspector for ltems View Controller
and check the box for Is Initial View Controller.

Build and run your application. You should see an empty table view, as shown in Figure 10.5. As

a subclass of UIViewController, a UITableViewController inherits the view property. When this
property is accessed for the first time, the LoadView() method is called, which creates and loads a view
object. A UITableViewController’s view is always an instance of UITableView, so asking for the
view of a UITableViewController gets you a bright, shiny, and empty table view.

Figure 10.5 Empty UITableView

Carrier 4:46 PM -

You no longer need the ViewController.swift file that the template created for you. Select this file in
the project navigator and press Delete.

180

Creating the Item Class

Creating the Item Class

Your table view needs some rows to display. Each row in the table view will display an item with
information such as a name, serial number, and value in dollars.

Create a new Swift file named Item. In Item.swift, define the Item class and give it four properties.

import UIKit

class Item: NSObject {
var name: String
var valueInDollars: Int
var serialNumber: String?
let dateCreated: Date

}

Item inherits from NSObject. NSObject is the base class that most Objective-C classes inherit from.
All of the UIKit classes that you have worked with — UIView, UITextField, and UIViewController,
to name a few — inherit either directly or indirectly from NSObject. Your own classes will often need to
inherit from NSObject when they need to interface with the runtime system.

Notice that serialNumber is an optional String, necessary because an item may not have a serial
number. Also, notice that none of the properties have a default value. You will need to give them values
in a designated initializer.

Custom initializers

You learned about struct initializers in Chapter 2. Initializers on structs are fairly straightforward
because structs do not support inheritance. Classes, on the other hand, have some rules for initializers
to support inheritance.

Classes can have two kinds of initializers: designated initializers and convenience initializers.

A designated initializer is a primary initializer for the class. Every class has at least one designated
initializer. A designated initializer ensures that all properties in the class have a value. Once it ensures
that, a designated initializer calls a designated initializer on its superclass (if it has one).

Implement a new designated initializer on the Item class that sets the initial values for all of the
properties.

import UIKit

class Item: NSObject {
var name: String
var valueInDollars: Int
var serialNumber: String?
let dateCreated: Date

init(name: String, serialNumber: String?, valueInDollars: Int) {
self.name = name
self.valueInDollars = valueInDollars
self.serialNumber = serialNumber
self.dateCreated = Date()

super.init()

181

Chapter 10 UlTableView and UlTableViewController

This initializer takes in arguments for the name, serialNumber, and valueInDollars. Because the
argument names and the property names are the same, you must use self to distinguish the property
from the argument.

Now that you have implemented your own custom initializer, you lose the free initializer — init() —

that classes have. The free initializer is useful when all of your class’s properties have default values

and you do not need to do additional work to create the new instance. The Item class does not satisfy
this criteria, so you have declared a custom initializer for the class.

Every class must have at least one designated initializer, but convenience initializers are optional.

You can think of convenience initializers as helpers. A convenience initializer always calls another
initializer on the same class. Convenience initializers are indicated by the convenience keyword before
the initializer name.

Add a convenience initializer to Item that creates a randomly generated item.

convenience init(random: Bool = false) {
if random {
let adjectives = ["Fluffy", "Rusty", "Shiny"]
let nouns = ["Bear", "Spork", "Mac"]

var idx = arc4random_uniform(UInt32(adjectives.count))
let randomAdjective = adjectives[Int(idx)]

idx = arc4random_uniform(UInt32(nouns.count))
let randomNoun = nouns[Int(idx)]

let randomName = "\ (randomAdjective) \(randomNoun)"

let randomValue = Int(arc4random_uniform(100))

let randomSerialNumber =
UUID().uuidString.components(separatedBy: "-").first!

self.init(name: randomName,
serialNumber: randomSerialNumber,
valueInDollars: randomValue)
} else {
self.init(name:
}

, serialNumber: nil, valueInDollars: 0)
}

If random is true, the instance is configured with a random name, serial number, and value. (The
arc4random_uniform function returns a random value between 0, inclusive, and the value passed in
as the argument, exclusive.) Notice that at the end of both branches of the conditional, you are calling
through to the designated initializer for Item. Convenience initializers must call another initializer on
the same type, whereas designated initializers must call a designated initializer on its superclass.

The Itenm class is ready for work. In the next section you will display an array of Item instances in a
table view.

182

UlTableView's Data Source

UlTableView’s Data Source

The process of providing rows to a UITableView in Cocoa Touch (the collection of frameworks used
to build 10S apps) is different from the typical procedural programming task. In a procedural design,
you tell the table view what it should display. In Cocoa Touch, the table view asks another object — its
dataSource — what it should display. In this case, the ItemsViewController is the data source, so it
needs a way to store item data.

You are going to use an array to store the I'tem instances, but with a twist. The array that holds the Item
instances will be abstracted into another object — an ItemStore (Figure 10.6).

Figure 10.6 Homepwner object diagram

subviews

window
A

rootViewController

I
I
I
' AppDelegate
|
[}
I

ItemStore

. _______ ______________________ K ______ Y e
:Controllersx

tableView Vview dataSource _delegate

y

ItemsViewController

allltems

If an object wants to see all of the items, it will ask the ItemStore for the array that contains them. In
future chapters, the store will be responsible for performing operations on the array, like reordering,

adding, and removing items. It will also be responsible for saving and loading the items from disk.

Create a new Swift file named ItemStore. In ItemStore.swift, define the ItemStore class and
declare a property to store the list of Items.

import UIKit
class ItemStore {
var alllItems = [Item]

}

9]

ItemStore is a Swift base class — it does not inherit from any other class. Unlike the Item class that
you defined earlier, ItemStore does not require any of the behavior that NSObject affords.

183

Chapter 10 UlTableView and UlTableViewController

The ItemsViewController will call a method on ItemStore when it wants a new Item to be created.
The ItemStore will oblige, creating the object and adding it to an array of instances of Item.

In ItemStore.swift, implement createItem() to create and return a new Item.

@discardableResult func createItem() -> Item {
let newItem = Item(random: true)

allltems.append(newItem)

return newItem

}

The @discardableResult annotation means that a caller of this function is free to ignore the result of
calling this function. Take a look at the following code listing that illustrates this effect.

// This is 0K
let newItem = itemStore.createItem()

// This is also OK; the result is not assigned to a variable
itemStore.createItem()

Giving the controller access to the store

In ItemsViewController.swift, add a property for an ItemStore.

class ItemsViewController: UITableViewController {

var itemStore: ItemStore!

}

Now, where should you set this property on the ItemsViewController instance? When the application
first launches, the AppDelegate’s application(_:didFinishLaunchingWithOptions:) method is
called. The AppDelegate is declared in AppDelegate.swift and, as the name implies, serves as the
delegate for the application itself. It is responsible for handling the changes in state that the application
goes through. You will learn more about the AppDelegate and the states that the application goes
through in Chapter 16.

Open AppDelegate.swift. Access the ItemsViewController (which will be the rootViewController
of the window) and set its itemStore property to be a new instance of ItemStore.
func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey : Any]?) —> Bool {
// Override point for customization after application launch.

// Create an ItemStore
let itemStore = ItemStore()

// Access the ItemsViewController and set its item store
let itemsController = window!.rootViewController as! ItemsViewController
itemsController.itemStore = itemStore

return true

184

Giving the controller access to the store

Finally, in ItemStore.swift, implement the designated initializer to add five random items.

init() {
for _ in 0..<5 {
createltem()
}

}

As a quick aside, if createItem() was not annotated with @discardableResult, then the call to that
function would have needed to look like:

// Call the function, but ignore the result
let _ = createItem()

At this point you may be wondering why itemStore was set externally on the ItemsViewController.
Why didn’t the ItemsViewController instance itself just create an instance of the store? The reason
for this approach is based on a fairly complex topic called the dependency inversion principle.

The essential goal of this principle is to decouple objects in an application by inverting certain
dependencies between them. This results in more robust and maintainable code.

The dependency inversion principle states that:
1. High-level objects should not depend on low-level objects. Both should depend on abstractions.
2. Abstractions should not depend on details. Details should depend on abstractions.

The abstraction required by the dependency inversion principle in Homepwner is the concept of a
“store.” A store is a lower-level object that retrieves and saves Item instances through details that are
only known to that class. ItemsViewController is a higher-level object that only knows that it will

be provided with a utility object (the store) from which it can obtain a list of Item instances and to
which it can pass new or updated Item instances to be stored persistently. This results in a decoupling
because ItemsViewController is not dependent on ItemStore. In fact, as long as the store abstraction
is respected, ItemStore could be replaced by another object that fetches Item instances differently
(such as by using a web service) without any changes to ItemsViewController.

A common pattern used when implementing the dependency inversion principle is dependency
injection. In its simplest form, higher-level objects do not assume which lower-level objects they need
to use. Instead, those are passed to them through an initializer or property. In your implementation of
ItemsViewController, you used injection through a property to give it a store.

185

Chapter 10 UlTableView and UlTableViewController

Implementing data source methods

Now that there are some items in the store, you need to teach ItemsViewController how to turn those
items into rows that its UITableView can display. When a UITableView wants to know what to display,
it calls methods from the set of methods declared in the UITableViewDataSource protocol.

Open the documentation and search for the UITableViewDataSource protocol reference. Scroll down
to the section titled Configuring a Table View (Figure 10.7).

Figure 10.7 UITableViewDataSource protocol documentation

eve < | > @] Q. UlTableViewDataSource [x]
Configuring a func tableView(UITableView, cellForRowAt: IndexPath)
Table View Required. Asks the data source for a cell to insert in a particular location of the
table view.

func numberOfSections(in: UITableView)

Asks the data source to return the number of sections in the table view.

func tableView(UITableView, numberOfRowsInSection: Int)
Required. Tells the data source to return the number of rows in a given section
of a table view.

func sectionIndexTitles(for: UITableView)

Asks the data source to return the titles for the sections for a table view.

func tableView(UITableView, sectionForSectionIndexTitle: String,
at: Int)
Asks the data source to return the index of the section having the given title
and section title index.

func tableView(UITableView, titleForHeaderInSection: Int)

Asks the data source for the title of the header of the specified section of the
table view.

func tableView(UITableView, titleForFooterInSection: Int)

Asks the data source for the title of the footer of the specified section of the
table view.

Inserting or func tableView(UITableView, commit: UITableViewCellEditingStyle,
A forRowAt: I Path
Deleting Table SRR ML)

Asks the data source ta caommit the insertion ar deletion of a snecified row in

In the Configuring a Table View section, notice that two of the methods are marked Required.

For ItemsViewController to conform to UITableViewDataSource, it must implement
tableView(_:numberOfRowsInSection:) and tableView(_:cellForRowAt:). These methods tell the
table view how many rows it should display and what content to display in each row.

Whenever a UITableView needs to display itself, it calls a series of methods (the required methods
plus any optional ones that have been implemented) on its dataSource. The required method
tableView(_:number0OfRowsInSection:) returns an integer value for the number of rows that the
UITableView should display. In the table view for Homepwner, there should be a row for each entry in
the store.

In ItemsViewController.swift, implement tableView(_:numberOfRowsInSection:).

override func tableView(_ tableView: UITableView,
number0OfRowsInSection section: Int) —> Int {
return itemStore.alllItems.count

186

UlTableViewCells

Wondering about the section that this method refers to? Table views can be broken up into sections,
with each section having its own set of rows. For example, in the address book, all names beginning
with “C” are grouped together in a section. By default, a table view has one section, and in this chapter
you will work with only one. Once you understand how a table view works, it is not hard to use
multiple sections. In fact, using sections is the first challenge at the end of this chapter.

The second required method in the UITableViewDataSource protocol is
tableView(_:cellForRowAt:). To implement this method, you need to learn about another class —
UITableViewCell.

UlTableViewCells

Each row of a table view is a view. These views are instances of UITableViewCell. In this section, you
will create the instances of UITableViewCell to fill the table view.

A cell itself has one subview — its contentView (Figure 10.8). The contentView is the superview for
the content of the cell. The cell may also have an accessory view.

Figure 10.8 UITableViewCell layout

UlTableViewCell contentView Accessory view

N 'This is the content view.

The accessory view shows an action-oriented icon, such as a checkmark, a disclosure icon, or an
information button. These icons are accessed through predefined constants for the appearance of the
accessory view. The default is UITableViewCellAccessoryType.none, and that is what you are going
to use in this chapter. You will see the accessory view again in Chapter 23. (Curious now? See the
documentation for UITableViewCell for more details.)

187

Chapter 10 UlTableView and UlTableViewController

The real meat of a UITableViewCell is the contentView, which has three subviews of its own

(Figure 10.9). Two of those subviews are UILabel instances that are properties of UITableViewCell
named textLabel and detailTextLabel. The third subview is a UIImageView called imageView. In

this chapter, you will use textLabel and detailTextLabel.

Figure 10.9 UITableViewCell hierarchy

detailTextLabel

textLabel

UlTableViewCell

contentView

'

UlView

UlLabel

T
subviews

v

imageView

UllmageView

UlLabel

Each cell also has a UITableViewCellStyle that determines which subviews are used and their
position within the contentView. Examples of these styles and their constants are shown in

Figure 10.10.

Figure 10.10 UITableViewCellStyle: styles and constants

UITableViewCellStyle.default

UITableViewCellStyle.subtitle

UITableViewCellStyle.valuel

UITableViewCellStyle.value2

188

H B

textLabel

textLabel
detailTextLabel

textLabel

detailTextLabel

textLabel detailTextLabel

Creating and retrieving UlTableViewCells

Creating and retrieving UlTableViewCells

For now, each cell will display the name of an Item as its textLabel and the valueInDollars of

the Item as its detailTextLabel. To make this happen, you need to implement the second required
method from the UITableViewDataSource protocol, tableView(_:cellForRowAt:). This method will
create a cell, set its textLabel to the name of the Item, set its detailTextLabel to the valueInDollars
of the Item, and return it to the UITableView (Figure 10.11).

Figure 10.11 UITableViewCell retrieval

ItemsViewController ItemStore
" g ~
tableView(_:cellForRowAt:) -~ — v =~ l
‘\ e N
\ .-~ dataSource \\ allltems
UlTableView N l
ltem
UlTableViewCell name = "Rusty Bear"
valuelnDollars = 94 \
UlTableViewCell Item F
name = "Fluffy Bear" [« | 3
valuelnDollars = 59
UlTableViewCell Item
name = "Fluffy Spork"

valuelnDollars = 66

UlTableViewCell Item

name = "Shiny Mac"
valuelnDollars = 72

UlTableViewCell

Item

name = "Fluffy Bear"
valuelnDollars = 40

How do you decide which cell an Item corresponds to? One of the parameters sent to
tableView(_:cellForRowAt:) is an IndexPath, which has two properties: section and row. When
this method is called on a data source, the table view is asking, “Can I have a cell to display in section
X, row Y?” Because there is only one section in this exercise, your implementation will only be
concerned with the index path’s row.

In ItemsViewController.swift, implement tableView(_:cellForRowAt:) so that the nth row
displays the nth entry in the allItems array

override func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) -> UITableViewCell {
// Create an instance of UITableViewCell, with default appearance
let cell = UITableViewCell(style: .valuel, reuseIdentifier: "UITableViewCell")

// Set the text on the cell with the description of the item
// that is at the nth index of items, where n = row this cell
// will appear in on the tableview

let item = itemStore.allItems[indexPath.row]

cell.textLabel?.text = item.name
cell.detailTextLabel?.text = "$\(item.valueInDollars)"

return cell

189

Chapter 10 UlTableView and UlTableViewController

Build and run the application now and you will see a UITableView populated with a list of random
items.

Reusing UlTableViewCells

10S devices have a limited amount of memory. If you were displaying a list with thousands of entries
in a UITableView, you would have thousands of instances of UITableViewCell. Most of these cells
would take up memory needlessly. After all, if the user cannot see a cell onscreen, then there is no
reason for that cell to have a claim on memory.

To conserve memory and improve performance, you can reuse table view cells. When the user scrolls
the table, some cells move offscreen. Offscreen cells are put into a pool of cells available for reuse.
Then, instead of creating a brand new cell for every request, the data source first checks the pool. If
there is an unused cell, the data source configures it with new data and returns it to the table view
(Figure 10.12).

Figure 10.12 Reusable instances of UITableViewCell

Cell1goes UlTableViewCell 1
offscreen...

T :

: UlTableViewCell 2 !

i :

I

! ; 1

A ! UlTableViewCell 3 !

! 1

! 1
1

! UlTableViewCell 4 |

. | . o .
Fedrecion | | ot UlTableView

l

' UlTableViewCell 5 !

i :

I

i UlTableViewCell 6 !

i :

. . I

... and is reinserted .' UlTableViewCell 1 :

into new visible spot ' !
I

There is one problem to be aware of: Sometimes a UITableView has different types of cells.
Occasionally, you subclass UITableViewCell to create a special look or behavior. However, different
subclasses floating around the pool of reusable cells create the possibility of getting back a cell of the
wrong type. You must be sure of the type of the cell returned so that you can be sure of what properties
and methods it has.

Note that you do not care about getting any specific cell out of the pool because you are going to
change the cell content anyway. What you need is a cell of a specific type. The good news is that every
cell has a reuseIdentifier property of type String. When a data source asks the table view for a
reusable cell, it passes a string and says, “I need a cell with this reuse identifier.” By convention, the
reuse identifier is typically the name of the cell class.

190

Reusing UlTableViewCells

To reuse cells, you need to register either a prototype cell or a class with the table view for a specific
reuse identifier. You are going to register the default UITableViewCell class. You tell the table view,
“Hey, any time I ask for a cell with this reuse identifier, give me back a cell that is this specific class.”
The table view will either give you a cell from the reuse pool or instantiate a new cell if there are no
cells of that type in the reuse pool.

Open Main.storyboard. Notice in the table view that there is a section for Prototype Cells
(Figure 10.13).

Figure 10.13 Prototype cells

Items View Controller

Prototype Cells -

In this area, you can configure the different kinds of cells that you need for the associated table

view. If you are creating custom cells, this is where you will set up the interface for the cells.
ItemsViewController only needs one kind of cell, and using one of the built-in styles will work great
for now, so you will only need to configure some attributes on the cell that is already on the canvas.

Select the prototype cell and open its attributes inspector. Change the Style to Right Detail (which
corresponds to UITableViewCellStyle.valuel) and give it an Identifier of UlTableViewCell
(Figure 10.14).

Figure 10.14 Table view cell attributes

® g B @
Table View Cell

Style Right Detail

(<] o

Image
Identifier UlTableViewCell

Selection Default
Accessory None
Editing Acc. None

Focus Style Default

il o] of of <

Indentation 0 10
Level Width

Indent While Editing
Shows Re-order Controls

Separator Default Insets ﬂ

191

Chapter 10 UlTableView and UlTableViewController

Next, in ItemsViewController.swift, update tableView(_:cellForRowAt:) to reuse cells.

override func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) —> UITableViewCell {

+—Ereate—an—instance—ofUitableVienwteltl—with—defaultt—appearance

// Get a new or recycled cell
let cell = tableView.dequeueReusableCell(withIdentifier: "UITableViewCell",
for: indexPath)

i

The method dequeueReusableCell(withIdentifier:for:) will check the pool, or queue, of cells to
see whether a cell with the correct reuse identifier already exists. If so, it will “dequeue” that cell. If
there is not an existing cell, a new cell will be created and returned.

Build and run the application. The behavior of the application should remain the same. Reusing cells
means that you only have to create a handful of cells, which puts fewer demands on memory. Your
application’s users (and their devices) will thank you.

192

Content Insets

Content Insets

As you have been running the application throughout this chapter, you might have noticed that the first
table view cell underlaps the status bar (Figure 10.15). The interfaces for the applications you create
fill up the entire window of the device. The status bar, if visible, is placed on top of the interface, so
your interfaces must account for the placement of the status bar.

Figure 10.15 Table view cell underlapping status bar

C 6:20 PM 1]

aFrlr{j%f;/sBear
Fluffy Bear
Shiny Bear
Rusty Spork

Shiny Spork

To have the table view cells not underlap the status bar, you will add some padding to the top of the
table view. A UITableView is a subclass of UIScrollView, from which it inherits the contentInset
property. You can think of the content inset as padding for all four sides of the scroll view.

In ItemsViewController.swift, override viewDidLoad () to update the table view content inset.

override func viewDidLoad() {
super.viewDidLoad()

// Get the height of the status bar
let statusBarHeight = UIApplication.shared.statusBarFrame.height

let insets = UIEdgeInsets(top: statusBarHeight, left: 0, bottom: 0, right: 0)
tableView.contentInset = insets
tableView.scrollIndicatorInsets = insets

}

The top of the table view is given a content inset equal to the height of the status bar. This will make
the content appear below the status bar when the table view is scrolled to the top. The scroll indicators
will also underlap the status bar, so you give them the same insets to have them appear just below the
status bar.

Notice that you access the tableView property on the ItemsViewController to get at the table view.
This property is inherited from UITableViewController and returns the controller’s table view. While
you can get the same object by accessing the view of a UITableViewController, using tableView tells
the compiler that the returned object will be an instance of UITableView. Thus, calling a method or
accessing a property that is specific to UITableView will not generate an error.

193

Chapter 10 UlTableView and UlTableViewController

Build and run the application. The table view cell content no longer underlaps the status bar when the
table view is scrolled to the top (Figure 10.16).

Figure 10.16 Table view with adjusted content inset

Carrier ¥ 6:32 PM &

Rusty Spork
Fluffy Spork
Shiny Spork

Rusty Bear

Fluffy Mac

Bronze Challenge: Sections

Have the UITableView display two sections — one for items worth more than $50 and one for the rest.
Before you start this challenge, copy the folder containing the project and all of its source files in
Finder. Then tackle the challenge in the copied project; you will need the original to build on in the
following chapters.

Silver Challenge: Constant Rows

Make it so the last row of the UITableView always has the text “No more items!” Make sure this row
appears regardless of the number of items in the store (including O items).

Gold Challenge: Customizing the Table

Make each row’s height 60 points, except for the last row from the silver challenge, which should
remain 44 points. Then, change the font size of every row except the last to 20 points. Finally, make the
background of the UITableView display an image. (To make this pixel-perfect, you will need an image
of the correct size depending on your device. Refer to the chart in Chapter 1.)

194

11

Editing UlTableView

In the last chapter, you created an application that displays a list of Item instances in a UITableView.
The next step is allowing the user to interact with the table — to add, delete, and move rows. Figure 11.1
shows what Homepwner will look like by the end of this chapter.

Figure 11.1 Homepwner in editing mode

Toggles edit mode Adds new item
Carrier & 8:30 PM L1
Allows deletion Allows reordering
Done Add
@ RustyMac $36
@ Shiny Spork $1
@ Shiny Mac $35

Editing Mode

UITableView has an editing property, and when this property is set to true, the UITableView enters
editing mode. Once the table view is in editing mode, the rows of the table can be manipulated by the
user. Depending on how the table view is configured, the user can change the order of the rows, add
rows, or remove rows. (Editing mode does not allow the user to edit the content of a row.)

But first, the user needs a way to put the UITableView in editing mode. For now, you are going to
include a button in the header view of the table. A header view appears at the top of a table and is
useful for adding section-wide or table-wide titles and controls. It can be any UIView instance.

195

Chapter 11 Editing UlTableView

Note that the table view uses the word “header” in two different ways: There can be a table header and
section headers. Likewise, there can be a table footer and section footers (Figure 11.2).

Figure 11.2 Headers and footers

Carrier ¥ 12:42 PM L1

Table View Header

SECTION HEADER

A

B

C

This is a section footer.

SECTION HEADER

1

2

3

This is a section footer.

Table View Footer

You are creating a table header view. It will have two subviews that are instances of UIButton: one
to toggle editing mode and the other to add a new Item to the table. You could create this view
programmatically, but in this case you will create the view and its subviews in the storyboard file.

First, let’s set up the necessary code. Reopen Homepwner.xcodeproj. In ItemsViewController.swift,
stub out two methods in the implementation.

class ItemsViewController: UITableViewController {
var itemStore: ItemStore!
@IBAction func addNewItem(_ sender: UIButton) {
}
@IBAction func toggleEditingMode(_ sender: UIButton) {
}

Now open Main.storyboard. From the object library, drag a View to the very top of the table view,
above the prototype cell. This will add the view as a header view for the table view. Resize the height
of this view to be about 60 points. (You can use the size inspector if you want to make it exact.)

196

Editing Mode

Now drag two Buttons from the object library to the header view. Change their text and position them
as shown in Figure 11.3. You do not need to be exact — you will add constraints soon to position the
buttons.

Figure 11.3 Adding buttons to the header view

W
ooo DE
Edio Addd
ooo ooao
Prototype Cells
Title Detail

Select both of the buttons and open the Auto Layout Align menu. Select Vertically in Container with a
constant of 0. Make sure Update Frames is set to None, and then click Add 2 Constraints (Figure 11.4).

Figure 11.4 Align menu constraints

Add New Alignment Constraints

@ Leading Edges

0 v
@ Trailing Edges 0 v
@ Top Edges 0 v
@ Bottom Edges 0 v
@B Horizontal Centers 0 v
@ Vertical Centers 0 v
@ Baselines 0 v
EB Horizontally in Container 0 v

@ Vertically in Container 0 v

Update Frames | None

Add 2 Constraints

Sz = N

197

Chapter 11 Editing UlTableView

Open the Add New Constraints menu and configure it as shown in Figure 11.5. Make sure the values
for the leading and trailing constraints save after you have typed them; sometimes the values do not
save, so it can be a bit tricky. When you have done that, click Add 4 Constraints.

Figure 11.5 Adding new constraints

Add New Constraints

15 -
8 [|8 v
15 -

Spacing to nearest neighbor

Constrain to margins
Width 30 v
Height 30 v

B equal widths
@ Equal Heights
@ Aspect Ratio

@ Align | Leading Edges

Update Frames | Items of New Constraints

Add 4 Constraints
2. B3 1= o] tad

Finally, connect the actions for the two buttons as shown in Figure 11.6.

Figure 11.6 Connecting the two actions

Items View Controller

> g K

toggleEditingMode: addNewItes: -
Edit Add

Prototype Cells

Title Detai

Build and run the application to see the interface.

198

Editing Mode

Now let’s implement the toggleEditingMode(_:) method. You could toggle the editing

property of UITableView directly. However, UIViewController also has an editing property. A
UITableViewController instance automatically sets the editing property of its table view to match
its own editing property. By setting the editing property on the view controller itself, it can ensure
that other aspects of the interface also enter and leave editing mode. You will see an example of this in
Chapter 14 with UIViewController’s editButtonItem.

To set the isEditing property for a view controller, you call the method setEditing(_:animated:).
In ItemsViewController.swift, implement toggleEditingMode(_:).

@IBAction func toggleEditingMode(_ sender: UIButton) {
// If you are currently in editing mode...
if isEditing {
// Change text of button to inform user of state
sender.setTitle("Edit", for: .normal)

// Turn off editing mode
setEditing(false, animated: true)
} else {
// Change text of button to inform user of state
sender.setTitle("Done", for: .normal)

// Enter editing mode
setEditing(true, animated: true)

b

Build and run your application. Tap the Edit button and the UITableView will enter editing mode
(Figure 11.7).

Figure 11.7 UITableView in editing mode

Carrier ¥ 8:36 PM 1]

Done Add

@ Fluffy Spork
@ Fluffy Spork

@ Fluffy Spork

199

Chapter 11 Editing UlTableView

Adding Rows

There are two common interfaces for adding rows to a table view at runtime.

* A button above the cells of the table view: usually for adding a record for which there is a detail
view. For example, in the Contacts app, you tap a button when you meet a new person and want to
take down his or her information.

* A cell with a green plus sign: usually for adding a new field to a record, such as when you want
to add a birthday to a person’s record in the Contacts app. In editing mode, you tap the green plus
sign next to “add birthday.”

In this exercise, you will use the first option and create a New button in the header view. When this
button is tapped, a new row will be added to the UITableView.

In ItemsViewController.swift, implement addNewItem(_:).

@IBAction func addNewItem(_ sender: UIButton) {
// Make a new index path for the 0th section, last row
let lastRow = tableView.numberOfRows(inSection: 0)
let indexPath = IndexPath(row: lastRow, section: 0)

// Insert this new row into the table
tableView.insertRows(at: [indexPath], with: .automatic)

i

Build and run the application. Tap the Add button and ... the application crashes. The console tells you
that the table view has an internal inconsistency exception.

Remember that, ultimately, it is the dataSource of the UITableView that determines the number of
rows the table view should display. After inserting a new row, the table view has six rows (the original
five plus the new one). When the UITableView asks its dataSource for the number of rows, the
ItemsViewController consults the store and returns that there should be five rows. The UITableView
cannot resolve this inconsistency and throws an exception.

You must make sure that the UITableView and its dataSource agree on the number of rows by adding
anew Item to the ItemStore before inserting the new row.

200

Adding Rows

In ItemsViewController.swift, update addNewItem(_:).

@IBAction func addNewItem(_ sender: UIButton) {

. fony
3’ H?he : fre i"r:"”EaE? Is; EE:FEE“E§EEEESU Faif Fow
Tet—indexPath—=—TIndexPath{ronr—tastRew—seection—0)
L3 hi . I b1
+ableHew—insertRevws{at—indexPathl—with——autematiec)
// Create a new item and add it to the store
let newItem = itemStore.createItem()

// Figure out where that item is in the array
if let index = itemStore.allltems.index(of: newItem) {
let indexPath = IndexPath(row: index, section: 0)

// Insert this new row into the table
tableView.insertRows(at: [indexPath], with: .automatic)

b

Build and run the application. Tap the Add button, and the new row will slide into the bottom position
of the table. Remember that the role of a view object is to present model objects to the user; updating
views without updating the model objects is not very useful.

Now that you have the ability to add rows and items, you no longer need the code that puts five random
items into the store.

Open ItemStore.swift and remove the initializer code.

it
for—in—0-—<s—f
ereatertent)
1
3

Build and run the application. There will no longer be any rows when you first launch the application,
but you can add some by tapping the Add button.

201

Chapter 11 Editing UlTableView

Deleting Rows

In editing mode, the red circles with the minus sign (shown in Figure 11.7) are deletion controls, and
tapping one should delete that row. However, at this point, you cannot actually delete the row. (Try it
and see.) Before the table view will delete a row, it calls a method on its data source about the proposed
deletion and waits for confirmation.

When deleting a cell, you must do two things: remove the row from the UITableView and remove the
Item associated with it from the ItemStore. To pull this off, the ItemStore must know how to remove
objects from itself.

In ItemStore.swift, implement a new method to remove a specific item.

func removeItem(_ item: Item) {
if let index = allltems.index(of: item) {
allItems.remove(at: index)
}

}

Now you will implement tableView(_:commit:forRow:), a method from the
UITableViewDataSource protocol. (This method is called on the ItemsViewController. Keep in
mind that while the ItemStore is where the data is kept, the ItemsViewController is the table view’s
dataSource.)

When tableView(_:commit:forRowAt:) is called on the data source, two extra arguments are passed
along with it. The first is the UITableViewCellEditingStyle, which, in this case, is .delete. The
other argument is the IndexPath of the row in the table.

In ItemsViewController.swift, implement this method to have the ItemStore remove the right
object and confirm the row deletion by calling the method deleteRows (at:with:) on the table view.

override func tableView(_ tableView: UITableView,
commit editingStyle: UITableViewCellEditingStyle,
forRowAt indexPath: IndexPath) {
// If the table view is asking to commit a delete command...
if editingStyle == .delete {
let item = itemStore.allItems[indexPath.row]
// Remove the item from the store
itemStore.removeItem(item)

// Also remove that row from the table view with an animation
tableView.deleteRows(at: [indexPath], with: .automatic)

}

Build and run your application, create some rows, and then delete a row. It will disappear. Notice that
swipe-to-delete works also.

202

Moving Rows

Moving Rows

To change the order of rows in a UITableView, you will use another method from the
UITableViewDataSource protocol — tableView(_:moveRowAt:to:).

To delete a row, you had to call the method deleteRows (at:with:) on the UITableView to

confirm the deletion. Moving a row, however, does not require confirmation: The table view

moves the row on its own authority and reports the move to its data source by calling the method
tableView(_:moveRowAt:to:). You implement this method to update your data source to match the
new order.

But before you can implement this method, you need to give the ItemStore a method to change the
order of items in its allItems array.

In ItemStore.swift, implement this new method.

func moveItem(from fromIndex: Int, to toIndex: Int) {
if fromIndex == toIndex {
return
}

// Get reference to object being moved so you can reinsert it
let movedItem = alllItems[fromIndex]

// Remove item from array
allltems.remove(at: fromIndex)

// Insert item in array at new location
allItems.insert(movedItem, at: toIndex)

}
In ItemsViewController.swift, implement tableView(_:moveRowAt:to:) to update the store

override func tableView(_ tableView: UITableView,
moveRowAt sourceIndexPath: IndexPath,
to destinationIndexPath: IndexPath) {
// Update the model
itemStore.moveItem(from: sourceIndexPath.row, to: destinationIndexPath.row)

203

Chapter 11 Editing UlTableView

Build and run your application. Add a few items, then tap Edit and check out the new reordering
controls (the three horizontal lines) on the side of each row. Touch and hold a reordering control and
move the row to a new position (Figure 11.8).

Figure 11.8 Moving a row

Carrier & 8:40 PM L3
Done Add

@ Fluffy Bear $35

@ Rusty Spork $84

@ shiny Mac

@ shiny Bear

@ Fluffy Mac

Note that simply implementing tableView(_:moveRowAt:to:) caused the reordering

controls to appear. The UITableView can ask its data source at runtime whether it implements
tableView(_:moveRowAt:to:). If it does, then the table view adds the reordering controls whenever
the table view enters editing mode.

204

Displaying User Alerts

Displaying User Alerts

In this section, you are going to learn about user alerts and the different ways of configuring and
displaying them. User alerts can provide your application with a better user experience, so you will use
them fairly often.

Alerts are often used to warn users that an important action is about to happen and perhaps
give them the opportunity to cancel that action. When you want to display an alert, you

create an instance of UIAlertController with a preferred style. The two available styles are
UIAlertControllerStyle.actionSheet and UIAlertControllerStyle.alert (Figure 11.9).

Figure 11.9 UIAlertController styles

Carrier & 7:41PM -—

< Sudurlam:j Edit
August 8, 2012 3:55 PM

“Homepwner” Would Like to
Access Your Photos

Don't Allow

Delete Photo

r‘\ BRI .

Cancel

.actionSheet .alert

The .actionSheet style is used to present the user with a list of actions from which to choose. The
.alert type is used to display critical information to require the user to decide how to proceed. The
distinction may seem subtle, but if the user can back out of a decision or if the action is not critical,
then an .actionSheet is probably the best choice.

You are going to use a UIAlertController to confirm the deletion of items. You will use the
.actionSheet style because the purpose of the alert is to confirm or cancel a possibly destructive
action.

205

Chapter 11 Editing UlTableView

Open ItemsViewController.swift and modify tableView(_:commit:forRowAt:) to ask the user to
confirm or cancel the deletion of an item.

override func tableView(_ tableView: UITableView,
commit editingStyle: UITableViewCellEditingStyle,
forRowAt indexPath: IndexPath) {
// If the table view is asking to commit a delete command...
if editingStyle == .delete {
let item = itemStore.allltems[indexPath. row]

let title = "Delete \(item.name)?"
let message = "Are you sure you want to delete this item?"

let ac = UIAlertController(title: title,
message: message,
preferredStyle: .actionSheet)

// Remove the item from the store
itemStore.removeltem(item)

// Also remove that row from the table view with an animation
tableView.deleteRows(at: [indexPathl, with: .automatic)

i

After determining that the user wants to delete an item, you create an instance of UIAlertController
with an appropriate title and message describing what action is about to take place. Also, you specify
the .actionSheet style for the alert.

The actions that the user can choose from when shown an alert are instances of UIAlertAction, and
you can add multiple ones regardless of the alert’s style. Actions are added to the UIAlertController
using the addAction(_:) method.

Add the necessary actions to the action sheet in tableView(_:commit:forRowAt:).

let ac = UIAlertController(title: title,
message: message,
preferredStyle: .actionSheet)

let cancelAction = UIAlertAction(title: "Cancel", style: .cancel, handler: nil)
ac.addAction(cancelAction)

let deleteAction = UIAlertAction(title: "Delete", style: .destructive,
handler: { (action) -> Void in
// Remove the item from the store
self.itemStore.removeltem(item)

// Also remove that row from the table view with an animation
self.tableView.deleteRows(at: [indexPath], with: .automatic)

1

ac.addAction(deleteAction)

206

Displaying User Alerts

The first action has a title of “Cancel” and is created using the . cancel style. The . cancel style results
in text in a standard blue font. This action will allow the user to back out of deleting an Item. The
handler parameter allows a closure to be executed when that action occurs. Because no other action is
needed, nil is passed as the argument.

The second action has a title of “Delete” and is created using the .destructive style. Because
destructive actions should be clearly marked and noticed, the .destructive style results in bright red
text. If the user selects this action, then the item and the table view cell need to be removed. This is all
done within the handler closure that is passed to the action’s initializer.

Now that the actions have been added, the alert controller can be displayed to the user. Because
UIAlertController is a subclass of UIViewController, you can present it to the user modally. A
modal view controller takes over the entire screen until it has finished its work.

To present a view controller modally, you call present(_:animated: completion:) on the view
controller whose view is on the screen. The view controller to be presented is passed to it, and this
view controller’s view takes over the screen.

let deleteAction = UIAlertAction(title: "Delete", style: .destructive,
handler: { (action) -> Void in
// Remove the item from the store
self.itemStore.removeItem(item)

// Also remove that row from the table view with an animation
self.tableView.deleteRows(at: [indexPath]l, with: .automatic)
1)

ac.addAction(deleteAction)

// Present the alert controller
present(ac, animated: true, completion: nil)

207

Chapter 11 Editing UlTableView

Build and run the application and delete an item. An action sheet will be presented for you to confirm
the deletion (Figure 11.10).

Figure 11.10 Deleting an item

Delete Fluffy Bear?
Are you sure you want to delete this item?

Delete

Cancel

208

Design Patterns

Design Patterns

A design pattern solves a common software engineering problem. Design patterns are not actual
snippets of code, but instead are abstract ideas or approaches that you can use in your applications.
Good design patterns are valuable and powerful tools for any developer.

The consistent use of design patterns throughout the development process reduces the mental overhead
in solving a problem so you can create complex applications more easily and rapidly. Here are some of
the design patterns that you have already used:

* Delegation: One object delegates certain responsibilities to another object. You used delegation
with the UITextField to be informed when the contents of the text field change.

* Data source: A data source is similar to a delegate, but instead of reacting to another object, a
data source is responsible for providing data to another object when requested. You used the data
source pattern with table views: Each table view has a data source that is responsible for, at a
minimum, telling the table view how many rows to display and which cell it should display at
each index path.

* Model-View-Controller: Each object in your applications fulfills one of three roles. Model objects
are the data. Views display the UI. Controllers provide the glue that ties the models and views
together.

» Target-action pairs: One object calls a method on another object when a specific event occurs.
The target is the object that has a method called on it, and the action is the method being called.
For example, you used target-action pairs with buttons: When a touch event occurs, a method will
be called on another object (often a view controller).

Apple is very consistent in its use of these design patterns, and so it is important to understand and
recognize them. Keep an eye out for these patterns as you continue through this book! Recognizing
them will help you learn new classes and frameworks much more easily.

Bronze Challenge: Renaming the Delete Button

When deleting a row, a confirmation button appears labeled Delete. Change the label of this button to
Remove.

Silver Challenge: Preventing Reordering

Make it so the table view always shows a final row that says “No more items!” (This part of the
challenge is the same as a challenge from the last chapter. If you have already done it, you can copy
your code from before.) Now, make it so that the final row cannot be moved.

Gold Challenge: Really Preventing Reordering

After completing the silver challenge, you may notice that even though you cannot move the No more
items! row itself, you can still drag other rows underneath it. Make it so that — no matter what — the No
more items! row can never be knocked out of the last position. Finally, make it undeletable.

209

12

Subclassing UlTableViewCell

A UITableView displays a list of UITableViewCell objects. For many applications, the basic cell with
its textLabel, detailTextLabel, and imageView is sufficient. However, when you need a cell with
more detail or a different layout, you subclass UITableViewCell.

In this chapter, you will create a subclass of UITableViewCell named ItemCell that will display Item
instances more effectively. Each of these cells will show an Item’s name, its value in dollars, and its
serial number (Figure 12.1).

Figure 12.1 Homepwner with subclassed table view cells

Carrier & 10:27 AM -
Edit Add

Fluffy Spork $71

Fluffy Spork $25

Shiny Mac $94

211

Chapter 12 Subclassing UlTableViewCell

You customize the appearance of UITableViewCell subclasses by adding subviews to its contentView.
Adding subviews to the contentView instead of directly to the cell itself is important because the cell
will resize its contentView at certain times. For example, when a table view enters editing mode,

the contentView resizes itself to make room for the editing controls (Figure 12.2). If you added
subviews directly to the UITableViewCell, the editing controls would obscure the subviews. The cell
cannot adjust its size when entering edit mode (it must remain the width of the table view), but the
contentView can and does.

Figure 12.2 Table view cell layout in standard and editing mode

| contentView.bounds.size.width

Fluffy Spork
Y op $25
A
A
|
1
1
contentView enters editing mode
UlTableViewCell 9
Delete control contentView Reorder control
4 ! \\
Z v A
| v 0
' Fluffy Spork .
Uty P $25!
| i
| |

contentView.bounds.size.width

Creating ItemCell

Create a new Swift file named ItemCell. In ItemCell.swift, define ItemCell as a UITableViewCell
subclass.

import UIKit
class ItemCell: UITableViewCell {

}

The easiest way to configure a UITableViewCell subclass is through a storyboard. In Chapter 10, you
saw that storyboards for table view controllers have a Prototype Cells section. This is where you will
lay out the content for the ItemCell.

Open Main.storyboard and select the UlTableViewCell in the document outline. Open its attributes
inspector, change the Style to Custom, and change the Identifier to ItemCell.

212

Creating ItemCell

Now open its identity inspector (the E tab). In the Class field, enter ItemCell (Figure 12.3).
Figure 12.3 Changing the cell class
Lo © U B @

Custom Class

Class | ItemCell V]
[~

Medule

Change the height of the prototype cell to be about 65 points tall. You can change it either on the
canvas or by selecting the table view cell and changing the Row Height from its size inspector.

An ItemCell will display three text elements, so drag three UILabel objects onto the cell. Configure
them as shown in Figure 12.4. Make the text of the bottom label a slightly smaller font in a light shade
of gray. Make sure that the labels do not overlap at all.

Figure 12.4 ItemCell’s layout

Add constraints to these three labels as follows.

1. Select the top-left label and open the Auto Layout Add New Constraints menu. Select the top and
left strut and then click Add 2 Constraints.

2. You want the bottom-left label to always be aligned with the top-left label. Control-drag from the
bottom-left label to the top-left label and select Leading.

3. With the bottom-left label still selected, open the Add New Constraints menu, select the bottom
strut, and then click Add 1 Constraint.

4. Select the right label and Control-drag from this label to its superview on its right side. Select
both Trailing Space to Container Margin and Center Vertically in Container.

5. Select the bottom-left label and open its size inspector. Find the Vertical Content Hugging Priority
and lower it to 250. Lower the Vertical Content Compression Resistance Priority to 749. You will
learn what these Auto Layout properties do in Chapter 13.

6. Your frames might be misplaced, so select the three labels and click the Update Frames button.

213

Chapter 12 Subclassing UlTableViewCell

Exposing the Properties of ItemCell

For ItemsViewController to configure the content of an ItemCell in tableView(_:cellForRowAt:),
the cell must have properties that expose the three labels. These properties will be set through outlet
connections in Main.storyboard.

The next step, then, is to create and connect outlets on ItemCell for each of its subviews.
Open ItemCell.swift and add three properties for the outlets.
import UIKit

class ItemCell: UITableViewCell {

@IBOutlet var namelLabel: UILabel!
@IBOutlet var serialNumberLabel: UILabel!
@IBOutlet var valuelLabel: UILabel!

b

You are going to connect the outlets for the three views to the ItemCell. When connecting outlets
earlier in the book, you Control-dragged from view controller in the storyboard to the appropriate view.
But the outlets for ItemCell are not outlets on a controller. They are outlets on a view: the custom
UITableViewCell subclass.

Therefore, to connect the outlets for ItemCell, you will connect them to the ItemCell.

Open Main. storyboard. Control-click on the ItemCell in the document outline and make the three
outlet connections shown in Figure 12.5.

Figure 12.5 Connecting the outlets

v Items View Controller Scene

v Items View Controller
v Table View o _

> View w
v ItemCell (—

v Content View Edit Add
L Name Label
L Serial Number Label
L Value Label Prototype Cells

o ItemCell
» Triggered Segues Label

¥ Outlets
accessoryView
backgroundView
editingAccessoryView
namelabel * Name Label
selectedBackgroundView
serialNumberLabel % Serial Number Label
valueLabel * Value Label
Outlet Collections
Referencing Outlets
Referencing Outlet Collections

Label

(@)
©
(@)
®
(@)
®
®

214

Using ItemCell

Using ItemCell

Let’s get your custom cells onscreen. In ItemsViewController’s tableView(_:cellForRowAt:)
method, you will dequeue an instance of ItemCell for every row in the table.

Now that you are using a custom UITableViewCell subclass, the table view needs to know how tall
each row is. There are a few ways to accomplish this, but the simplest way is to set the rowHeight
property of the table view to a constant value. You will see another way later in this chapter.

Open ItemsViewController.swift and update viewDidLoad () to set the height of the table view
cells.

override func viewDidLoad() {
super.viewDidlLoad()

// Get the height of the status bar
let statusBarHeight = UIApplication.shared.statusBarFrame.height

let insets = UIEdgeInsets(top: statusBarHeight, left: @, bottom: @, right: 0)
tableView.contentInset = insets
tableView.scrollIndicatorInsets = insets

tableView. rowHeight = 65
¥

Now that you have registered the ItemCell with the table view (using the prototype cells in the
storyboard), you can ask the table view to dequeue a cell with the identifier “ItemCell.”

In ItemsViewController.swift, modify tableView(_:cellForRowAt:).

override func tableView(_ tableView: UITableView,
cellForRowAt indexPath: NSIndexPath) —-> UITableViewCell {
// Get a new or recycled cell

"] [T}
7

for+—indexPath)

let cell = tableView.dequeueReusableCell(withIdentifier: "ItemCell",
for: indexPath) as! ItemCell

// Set the text on the cell with the description of the item
// that is at the nth index of items, where n = row this cell
// will appear in on the tableview

let item = itemStore.allltems[indexPath. row]
cett—texttabel2text=—itemname

// Configure the cell with the Item
cell.nameLabel.text = item.name
cell.serialNumberLabel.text = item.serialNumber
cell.valuelLabel.text = "$\(item.valueInDollars)"

return cell

b

First, the reuse identifier is updated to reflect your new subclass. The code at the end of this method is
fairly obvious — for each label on the cell, set its text to some property from the appropriate Item.

215

Chapter 12 Subclassing UlTableViewCell

Build and run the application. The new cells now load with their labels populated with the values from
each Item.

Dynamic Cell Heights

Currently, the cells have a fixed height of 65 points. It is much better to allow the content of the cell
to drive its height. That way, if the content ever changes, the table view cell’s height can change
automatically.

You can achieve this goal, as you have probably guessed, with Auto Layout. The UITableViewCell
needs to have vertical constraints that will exactly determine the height of the cell. Currently, ItemCell
does not have sufficient constraints for this. You need to add a constraint between the two left labels
that fixes the vertical spacing between them.

Open Main.storyboard. Control-drag from the nameLabel to the serialNumberLabel and select
Vertical Spacing.

Now open ItemsViewController.swift and update viewDidLoad () to tell the table view that it should
compute the cell heights based on the constraints.

override func viewDidLoad() {
super.viewDidlLoad()

// Get the height of the status bar
let statusBarHeight = UIApplication.shared.statusBarFrame.height

let insets = UIEdgeInsets(top: statusBarHeight, left: @, bottom: @, right: 0)
tableView.contentInset = insets
tableView.scrollIndicatorInsets = insets

tableView. rowHeight = UITableViewAutomaticDimension
tableView.estimatedRowHeight = 65
}

UITableViewAutomaticDimension is the default value for rowHeight, so while it is not necessary to
add, it is useful for understanding what is going on. Setting the estimatedRowHeight property on the
table view can improve performance. Instead of asking each cell for its height when the table view
loads, setting this property allows some of that performance cost to be deferred until the user starts
scrolling.

Build and run the application. The application will look the same as it did before. In the next section,
you will learn about a technology called Dynamic Type that will take advantage of the automatically
resizing table view cells.

216

Dynamic Type

Dynamic Type

Creating an interface that appeals to everyone can be daunting. Some people prefer more compact
interfaces so they can see more information at once. Others might want to be able to easily see
information at a glance, or perhaps they have poor eyesight. In short: People have different needs.
Good developers strive to make apps that meet those needs.

Dynamic Type is a technology that helps realize this goal by providing specifically designed text styles
that are optimized for legibility. Users can select one of seven preferred text sizes from within Apple’s
Settings application (plus a few additional larger sizes from within the Accessibility section), and apps
that support Dynamic Type will have their fonts scaled appropriately. In this section, you will update
ItemCell to support Dynamic Type. Figure 12.6 shows the application rendered at the smallest and
largest user-selectable Dynamic Type sizes.

Figure 12.6 ItemCell with Dynamic Type supported

Carrier = 12:20 PM - Carrier & 12:19 PM 1
Edit Add Edit Add
Shiny Spork $22 Shiny Spork $22
Fluffy Mac
$32
Fluffy Mac $32
Rusty Bear
$31
Rusty Bear $31
Fluffy Spork $65
Fluff rk
uffy Spo $65

217

Chapter 12 Subclassing UlTableViewCell

The Dynamic Type system is centered around text styles. When a font is requested for a given text
style, the system will consider the user’s preferred text size in association with the text style to return
an appropriately configured font. Figure 12.7 shows the different text styles.

Figure 12.7 Text styles

Carrier ¥ 1:20 PM -
Title 1 UlIFontTextStyle.title1
Title 2 < UIFontTextS|tyle.titIe2
Title 3 UIFontTextSltyle.titleS
Headline UIFontTextSlter.headIine
Body UIFontTextSlter.body
Callout = UIFontTextS;ter.caIIout
Subhead UlFontTextStyle.subheadline

|

Footnote UIFontTextSlter.footnote
Caption 1 Ul FontTextSlter.captiom
Caption 2 UlFontTextStyle.caption2

Open Main.storyboard. Let’s update the labels to use the text styles instead of fixed fonts. Select the
nameLabel and valueLabel and open the attributes inspector. Click on the text icon to the right of Font.
For Font, choose Text Styles - Body (Figure 12.8). Repeat the same steps for the serialNumberLabel,
choosing the Caption 1 text style.

Figure 12.8 Changing the text style

® U 0 ©
Label
Text Plain
Label
Color HEEEE Default

Font Body T
P - e —_— P—
Font Text Styles - Body [T IS

Family Not Applicable
Style Not Applicable
Size
Done i

Autoshrink = Fixed Font Size ﬂ
Tighten Letter Spacing

218

Dynamic Type

Now let’s change the preferred font size. You do this through the Settings application.

Build and run the application. From the simulator’s Hardware menu, select Home. Next, on the
simulator’s Home screen, open the Settings application. Choose General, then Accessibility, and
then Larger Text. (On an actual device, this menu can also be accessed in Settings via Display &

Brightness — Text Size.) Drag the slider all the way to the left to set the font size to the smallest value
(Figure 12.9).

Figure 12.9 Text size settings

Carrier 9:21 AM (-

< Accessibility Larger Text

Larger Accessibility Sizes

Apps that support Dynamic Type will adjust to
your preferred reading size below.

Drag the slider below

Build and run the application. (If you switch back to the application, either using the task switcher or
through the Home screen, you will not see the changes. You will fix that in the next section.) Add some
items to the table view and you will see the new smaller font sizes in action.

219

Chapter 12 Subclassing UlTableViewCell

Responding to user changes

When the user changes the preferred text size and returns to the application, the table view will get
reloaded. Unfortunately, the labels will not know about the new preferred text size. To fix this, you
need to have the labels automatically adjust to content size changes.

Open ItemCell.swift and override awakeFromNib() to have the labels automatically adjust.

override func awakeFromNib() {
super.awakeFromNib ()

namelLabel.adjustsFontForContentSizeCategory = true
serialNumberLabel.adjustsFontForContentSizeCategory = true
valuelLabel.adjustsFontForContentSizeCategory = true

}

The method awakeFromNib () gets called on an object after it is loaded from an archive, which in this
case is the storyboard file. By the time this method is called, all of the outlets have values and can be
used.

Build and run the application and add a few rows. Go into Settings and change the preferred reading

size to the largest size. Unlike before, you can now switch back to Homepwner, either by opening the
task switcher or through the Home screen, and the table view will update to reflect the new preferred
text size.

Bronze Challenge: Cell Colors

Update the ItemCell to display the valueInDollars in green if the value is less than 50 and red if the
value is greater than or equal to 50.

220

13

Stack Views

You have been using Auto Layout throughout this book to create flexible interfaces that scale across
device types and sizes. Auto Layout is a very powerful technology, but with that power comes
complexity. Laying out an interface well often needs a lot of constraints, and it can be difficult to create
dynamic interfaces due to the need to constantly add and remove constraints.

Often, an interface (or a subsection of the interface) can be laid out in a linear fashion. Think
about the other applications you wrote: The Quiz application from Chapter 1 consisted of four
subviews that were laid out vertically. The same is true for the WorldTrotter application; the
ConversionViewController had a vertical interface consisting of a text field and a few labels.

Interfaces that have a linear layout are great candidates for using a stack view. A stack view is an
instance of UIStackView that allows you to create a vertical or horizontal layout that is easy to lay out
and manages most of the constraints that you would typically have to manage yourself. Perhaps best of
all, you are able to nest stack views within other stack views, which allows you to create truly amazing
interfaces in a fraction of the time.

221

Chapter 13 Stack Views

In this chapter, you are going to continue working on Homepwner to create an interface for displaying
the details of a specific Item. The interface that you create will consist of multiple nested stack views,

both vertical and horizontal (Figure 13.1).

Figure 13.1 Homepwner with stack views

Carrier 4:07 PM [__J
Name Fluffy Mac

Serial 61143318

Value 75.00

Aug 25, 2016

222

Using UlStackView

Using UlStackView

You are going to create an interface for editing the details of an Item. You will get the basic interface
working in this chapter, and then you will finish implementing the details in Chapter 14.

At the top level, you will have a vertical stack view with four elements displaying the item’s name,
serial number, value, and date created (Figure 13.2).

Figure 13.2 Vertical stack view layout

Serial

Value

Date Created

Open your Homepwner project and then open Main.storyboard. Drag a new View Controller from the
object library onto the canvas. Drag a Vertical Stack View from the object library onto the view for the
View Controller. Add constraints to the stack view to pin it to the leading and trailing margins, and pin
the top and bottom edges to be 8 points from the top and bottom layout guides.

223

Chapter 13 Stack Views

Now drag four instances of UILabel from the object library onto the stack view. From top to bottom,
give these labels the text “Name,” “Serial,” “Value,” and “Date Created” (Figure 13.3).

Figure 13.3 Labels added to the stack view

® =

Name

Serial
Value
Date Created

You can see a problem right away: The labels all have a red border (indicating an Auto Layout
problem) and there is a warning that some views are vertically ambiguous. There are two ways you can
fix this issue: by using Auto Layout, or by using a property on the stack view. Let’s work through the
Auto Layout solution first because it highlights an important aspect of Auto Layout.

Implicit constraints

You learned in Chapter 3 that every view has an intrinsic content size. You also learned that if you do
not specify constraints that explicitly determine the width or height, the view will derive its width or
height from its intrinsic content size. How does this work?

It does this using implicit constraints derived from a view’s content hugging priorities and its content
compression resistance priorities. A view has one of these priorities for each axis:

* horizontal content hugging priority
 vertical content hugging priority
* horizontal content compression resistance priority

* vertical content compression resistance priority

224

Implicit constraints

Content hugging priorities

The content hugging priority is like a rubber band that is placed around a view. The rubber band
makes the view not want to be bigger than its intrinsic content size in that dimension. Each priority is
associated with a value from @ to 1000. A value of 1000 means that a view cannot get bigger than its
intrinsic content size on that dimension.

Let’s look at an example with just the horizontal dimension. Say you have two labels next to one
another with constraints both between the two views and between each view and its superview, as
shown in Figure 13.4.

Figure 13.4 Two labels side by side

H Achieve H Nerdvana H

This works great until the superview becomes wider. At that point, which label should become wider?
The first label, the second label, or both? As Figure 13.5 shows, the interface is currently ambiguous.

Figure 13.5 Ambiguous layout

H Achieve H— Nerdvana H

H Achieve H Nerdvana H

This is where the content hugging priority becomes relevant. The view with the higher content hugging
priority is the one that does not stretch. You can think about the priority value as the “strength” of the
rubber band. The higher the priority value, the stronger the rubber band, and the more it wants to hug
to its intrinsic content size.

225

Chapter 13 Stack Views

Content compression resistance priorities

The content compression resistance priorities determine how much a view resists getting smaller than
its intrinsic content size. Consider the same two labels from Figure 13.4. What would happen if the
superview’s width decreased? One of the labels would need to truncate its text (Figure 13.6). But
which one?

Figure 13.6 Compressed ambiguous layout

H Ach... H Nerdvana H

H Achieve H Nerdv... H

The view with the greater content compression resistance priority is the one that will resist
compression and, therefore, not truncate its text.

With this knowledge, you can now fix the problem with the stack view.

Select the Date Created label and open its size inspector. Find the Vertical Content Hugging Priority and
lower it to 249. Now the other three labels have a higher content hugging priority, so they will all hug
to their intrinsic content height. The Date Created label will stretch to fill in the remaining space.

226

Stack view distribution

Stack view distribution

Let’s take a look at another way of solving the problem. Stack views have a number of properties that
determine how their content is laid out.

Select the stack view, either on the canvas or using the document outline. Open its attributes inspector
and find the section at the top labeled Stack View. One of the properties that determines how the
content is laid out is the Distribution property. Currently it is set to Fill, which lets the views lay out their
content based on their intrinsic content size. Change the value to Fill Equally. This will resize the labels
so that they all have the same height, ignoring the intrinsic content size (Figure 13.7). Be sure to read
the documentation for the other distribution values that a stack view can have.

Figure 13.7 Stack view set to fill equally

Name

Serial

Value

Date Created

Change the Distribution of the stack view back to Fill; this is the value you will want going forward in
this chapter.

227

Chapter 13 Stack Views

Nested stack views

One of the most powerful features of stack views is that they can be nested within one another. You
will use this to nest horizontal stack views within the larger vertical stack view. The top three labels
will have a text field next to them that displays the corresponding value for the Item and will also allow
the user to edit that value.

Select the Name label on the canvas. Click the second icon from the left in the Auto Layout constraints
menu: E4. This will embed the selected view in a stack view.

Select the new stack view and open its attributes inspector. The stack view is currently a vertical stack
view, but you want it to be a horizontal stack view. Change the Axis to Horizontal.

Now drag a Text Field from the object library to the right of the Name label. Because labels, by default,
have a greater content hugging priority than text fields, the label hugs to its intrinsic content width

and the text field stretches. The label and the text field currently have the same content compression
resistance priorities, which would result in an ambiguous layout if the text field’s text was too long.
Open the size inspector for the text field and set its Horizontal Content Compression Resistance Priority
to 749. This will ensure that the text field’s text will be truncated if necessary, rather than the label.

Stack view spacing

The label and text field look a little squished because there is no spacing between them. Stack views
allow you to customize the spacing between items.

Select the horizontal stack view and open its attributes inspector. Change the Spacing to be 8
points. Notice that the text field shrinks to accommodate the spacing, because it is less resistant to
compression than the label.

Repeat these steps for the Serial and Value labels:
1. Select the label and click the B3 icon.
2. Change the stack view to be a horizontal stack view.

3. Drag a text field onto the horizontal stack view and change its horizontal content compression
resistance priority to be 749.

4. Update the stack view to have a spacing of 8 points.

There are a couple of other tweaks you will want to make to the interface: The vertical stack view
needs some spacing. The Date Created label should have a center text alignment. And the Name,
Serial, and Value labels should be the same width.

Select the vertical stack view, open its attributes inspector, and update the Spacing to be 8 points. Then
select the Date Created label, open its attributes inspector, and change the Alignment to be centered.
That solves the first two issues.

Although stack views substantially reduce the number of constraints that you need to add to your
interface, some constraints are still important. With the interface as is, the text fields do not align

on their leading edge due to the difference in the widths of the labels. (The difference is not very
noticeable in English, but it becomes more pronounced when localized into other languages.) To solve
this, you will add leading edge constraints between the three text fields.

228

Stack view spacing

Control-drag from the Name text field to the Serial text field and select Leading. Then do the same for
the Serial text field and the Value text field. The completed interface will look like Figure 13.8.

Figure 13.8 Final stack view interface
® E

Name
Serial

Value

Date Created

Stack views allow you to create very rich interfaces in a fraction of the time it would take to configure
them manually using constraints. Constraints are still added, but they are being managed by the

stack view itself instead of by you. Stack views allow you to have very dynamic interfaces at

runtime. You can add and remove views from stack views by using addArrangedSubview(_:),
insertArrangedSubview(_:at:), and removeArrangedSubview(_:). You can also toggle the hidden
property on a view in a stack view. The stack view will automatically lay out its content to reflect that
value.

229

Chapter 13 Stack Views

Segues

Most 108 applications have a number of view controllers that users navigate between. Storyboards
allow you to set up these interactions as segues without having to write code.

A segue moves another view controller’s view onto the screen and is represented by an instance of
UIStoryboardSegue. Each segue has a style, an action item, and an identifier. The style of a segue
determines how the view controller will be presented. The action item is the view object in the
storyboard file that triggers the segue, like a button, a table view cell, or some other UIControl. The
identifier is used to programmatically access the segue. This is useful when you want to trigger a segue
that does not come from an action item, like a shake or some other interface element that cannot be set
up in the storyboard file.

Let’s start with a show segue. A show segue displays a view controller depending on the context in
which it is displayed. The segue will be between the table view controller and the new view controller.
The action items will be the table view’s cells; tapping a cell will show the view controller modally.

In Main.storyboard, select the ItemCell prototype cell on the Items View Controller. Control-drag
from the cell to the new view controller that you set up in the previous section. (Make sure you are
Control-dragging from the cell and not the table view!) A black panel will appear that lists the possible
styles for this segue. Select Show from the Selection Segue section (Figure 13.9).

Figure 13.9 Setting up a show segue

Selection Segue
Show
Show Detail
Present Modally
Present As Popover
Custom

Accessory Action

Show
Show Detail
Present Modally
Present As Popover
Custom
Non-Adaptive Selection Segue
Push (deprecated)

Modal (deprecated)
v

Notice the arrow that goes from the table view controller to the new view controller. This is a segue.
The icon in the circle tells you that this segue is a show segue — each segue has a unique icon.

Build and run the application. Tap a cell and the new view controller will slide up from the bottom
of the screen. (Sliding up from the bottom is the default behavior when presenting a view controller
modally.)

So far, so good! But there are two problems at the moment: The view controller is not displaying the
information for the Item that was selected, and there is no way to dismiss the view controller to return
to the ItemsViewController. You will fix the first issue in the next section, and you will fix the second
issue in Chapter 14.

230

Hooking Up the Content

Hooking Up the Content

To display the information for the selected Item, you will need to create a new UIViewController
subclass.

Create a new Swift file and name it DetailViewController. Open DetailViewController.swift and
declare a new UIViewController subclass named DetailViewController.

import UIKit
class DetailViewController: UIViewController {

}

Because you need to be able to access the subviews you created during runtime,
DetailViewController needs outlets for them. The plan is to add four new outlets to
DetailViewController and then make the connections. In previous exercises, you did this in
two distinct steps: First, you added the outlets in the Swift file, then you made connections in the
storyboard file. You can do both at once using the assistant editor.

With DetailViewController.swift open, Option-click on Main.storyboard in the project navigator.
This will open the file in the assistant editor right next to DetailViewController.swift. (You can
toggle the assistant editor by clicking the middle button from the Editor control at the top of the
workspace. The shortcut to display the assistant editor is Command-Option-Return, and the shortcut to
return to the standard editor is Command-Return.)

231

Chapter 13 Stack Views

Your window has become a little cluttered. Let’s make some temporary space. Hide the navigator

area by clicking the left button in the View control at the top of the workspace (the shortcut for this is
Command-0). Then, hide the document outline in Interface Builder by clicking the toggle button in the
lower-left corner of the editor. Your workspace should now look like Figure 13.10.

Figure 13.10 Laying out the workspace

eco0 »

8 s 2

1/
2 //
1/

/A Homepwner) i iPhone 7 p Build

troller.swift) [DetailViewControll

88

Copyright © 2016 Big Nerd Ranch

5 import UIKit

7 class DetailViewController: UIViewController {

10 }

| Today at 9:36 AM

@ < 0Od O

1] Manual [2] View Controller Scene View Controller =+ X n ® $ B O
Custom Class
— Class) -]
Qo = Modle
-
Identity
Name Storyboard ID
Serial Restoration ID
Use Storyboard ID
Value
User Defined Runtime Attributes
Key Path Type Value
F
Document
Label
x
Object ID PPq-zZ-leY
Lock Inherited - (Nothing)
Notes = === -— D& -7

Date Created

[View as: iPhone 7 (+C nR)

— 100% +

1= tof taf| B8

<

®

0DO06ea8

View Controller - A controller that
manages a view.

Storyboard Reference - Provides a
placeholder for a view controller in an
external storyboard.

Navigation Controller - A
controller that manages navigation
through a hierarchy of views.

Before you connect the outlets, you need to tell the detail interface that it should be associated with
the DetailViewController. Select the View Controller on the canvas and open its identity inspector.
Change the Class to be DetailViewController (Figure 13.11).

Figure 13.11 Setting the view controller class

O ®

Custom Class

B &

E @

Class DetailViewController

Module

232

Hooking Up the Content

The three instances of UITextField and bottom instance of UILabel will be outlets in
DetailViewController. Control-drag from the UITextField next to the Name label to the top of
DetailViewController.swift, as shown in Figure 13.12.

Figure 13.12 Dragging from storyboard to source file

® o » /A Homepwner) i iPhone 7 P\ | Build) | Today at 12:56 PM = < OO m

=] £ Homepwner 3 DetailViewController.swift) [DetailViewController | 58 m B8 St.iew) F Round Style TextField + X 0D ® T B O

Custom Class

/!
2 % Copyright © 2016 Big Nerd Ranch cose °B

5 import UIKit -
Identity

7 class DetailViewController: UIViewController { ’NEA:—:—~
i Restoration ID

nEroller:iUIViewcontrol e]
R =2 Outiet, Action, or Outlet Collection

Insert Outlet, Action, or Outlet Collection :
0} N Serial User Defined Runtime Attributes

1 Key Path Type Value
Value

¥
Document
Label
x
Object ID Mhr-TL-QYy
Lock Inherited - (Nothing)

Accessibility
Date Created Accessibility @ Enabled
Label
Hint

Identifier

D OB

View Controller - A controller that
manages a view.

Storyboard Reference - Provides a
placeholder for a view controller in an
external storyboard.

Navigation Controller - A
through a hierarchy of views.

[Viewas:iPhone 7 («C nR) — 100% -+ E3 12 tof taf | BB | @ Fit

Let go and a pop-up window will appear. Enter nameField into the Name field, make sure the Storage
is set to Strong, and click Connect (Figure 13.13).

Figure 13.13 Autogenerating an outlet and making a connection

|
Connection | Qutlet 1
Object Detail View Controller 1

Name nameField
Type UlTextField B,
Storage | Strong :
Cancel Connect | |

NS

This will create an @IBOutlet property of type UITextField named nameField in
DetailViewController.

233

Chapter 13 Stack Views

In addition, this UITextField is already connected to the nameField outlet of the
DetailViewController. You can verify this by Control-clicking on the Detail View Controller to see
the connections. Also notice that hovering your mouse above the nameField connection in the panel
that appears will reveal the UITextField that you connected. Two birds, one stone.

Create the other three outlets the same way and name them as shown in Figure 13.14.
Figure 13.14 Connection diagram

Detail View Controller

|
Name <—nameField
Serial <——serialNumberField
Value <— valueField
Date Created <«<— datelLabel

234

Hooking Up the Content

After you make the connections, DetailViewController.swift should look like this:
import UIKit
class DetailViewController: UIViewController {

@IBOutlet var nameField: UITextField!
@IBOutlet var serialNumberField: UITextField!
@IBOutlet var valueField: UITextField!
@IBOutlet var datelLabel: UILabel!

b

If your file looks different, then your outlets are not connected correctly. Fix any disparities between
your file and the code shown above in three steps: First, go through the Control-drag process and make
connections again until you have the four lines shown above in your DetailViewController.swift.
Second, remove any wrong code (like non-property method declarations or properties) that got created.
Finally, check for any bad connections in the storyboard file — in Main. storyboard, Control-click on
the Detail View Controller. If there are yellow warning signs next to any connection, click the x icon
next to those connections to disconnect them.

It is important to ensure that there are no bad connections in an interface file. A bad connection
typically happens when you change the name of a property but do not update the connection in the
interface file or when you completely remove a property but do not remove it from the interface file.
Either way, a bad connection will cause your application to crash when the interface file is loaded.

With the connections made, you can close the assistant editor and return to viewing just
DetailViewController.swift.

DetailViewController will hold on to a reference to the Item that is being displayed. When its view
is loaded, you will set the text on each text field to the appropriate value from the Item instance.

In DetailViewController.swift, add a property for an Item instance and override
viewWillAppear(_:) to set up the interface.

class DetailViewController: UIViewController {

@IBOutlet var nameField: UITextField!
@IBOutlet var serialNumberField: UITextField!
@IBOutlet var valueField: UITextField!
@IBOutlet var datelLabel: UILabel!

var item: Item!

override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear (animated)

nameField.text = item.name
serialNumberField.text = item.serialNumber
valueField.text = "\(item.valueInDollars)"
dateLabel.text = "\(item.dateCreated)"

235

Chapter 13 Stack Views

This works, but instead of using string interpolation to print out the valueInDollars and dateCreated,
it would be better to use a formatter. You used an instance of NumberFormatter in Chapter 4. You will
use another one here, as well as an instance of DateFormatter to format the dateCreated.

Add an instance of NumberFormatter and DateFormatter to the DetailViewController. Use these
formatters in viewWillAppear(_:) to format the valueInDollars and dateCreated.

var item: Item!

let numberFormatter: NumberFormatter = {
let formatter = NumberFormatter()
formatter.numberStyle = .decimal
formatter.minimumFractionDigits
formatter.maximumFractionDigits
return formatter

30

let dateFormatter: DateFormatter = {
let formatter = DateFormatter()
formatter.dateStyle .medium
formatter.timeStyle .none
return formatter

30

override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(animated)

nameField.text = item.name
serialNumberField.text = item.serialNumber

valueField.text =
numberFormatter.string(from: NSNumber(value: item.valueInDollars))
dateLabel.text = dateFormatter.string(from: item.dateCreated)

Passing Data Around

When a row in the table view is tapped, you need a way of telling the DetailViewController which
item was selected. Whenever a segue is triggered, the prepare(for:sender:) method is called on

the view controller initiating the segue. This method has two arguments: the UIStoryboardSegue,
which gives you information about which segue is happening, and the sender, which is the object that
triggered the segue (a UITableViewCell or a UIButton, for example).

The UIStoryboardSegue gives you three pieces of information: the source view controller (where
the segue originates), the destination view controller (where the segue ends), and the identifier of the
segue. The identifier lets you differentiate segues. Let’s give the segue a useful identifier.

236

Passing Data Around

Open Main.storyboard again. Select the show segue by clicking on the arrow between the two view
controllers and open the attributes inspector. For the identifier, enter showItem (Figure 13.15).

Figure 13.15 Segue identifier
® g @ ©

Storyboard Segue
Identifier showltem
Class
Module

Kind Show (e.g. Push)

(o] <] <

Animates

Peek & Pop Preview & Commit Segues

With your segue identified, you can now pass your Item instances around. Open
ItemsViewController.swift and implement prepare(for:sender:).

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
// If the triggered segue is the "showItem" segue
switch segue.identifier {
case "showItem"?:
// Figure out which row was just tapped
if let row = tableView.indexPathForSelectedRow?.row {

// Get the item associated with this row and pass it along
let item = itemStore.allItems[row]
let detailViewController

= segue.destination as! DetailViewController
detailViewController.item = item

}
default:

preconditionFailure("Unexpected seqgue identifier.")
}

}

You learned about switch statements in Chapter 2. Here, you are using one to switch over the possible
segue identifiers. Because the segue’s identifier is an optional String, you include a ? after the
case pattern (i.e., after "showItem"). The default block uses the preconditionFailure(_:) function
to catch any unexpected segue identifiers and crash the application. This would be the case if the
programmer either forgot to give a segue an identifier or if there was a typo somewhere with the segue
identifiers. In either case, it is the programmer’s mistake, and using preconditionFailure(_:) can
help you identify these problems sooner.

Build and run the application. Tap on a row and the DetailViewController will slide onscreen,
displaying the details for that item. (You will fix the inability to go back to the ItemsViewController
in Chapter 14.)

Many programmers new to iOS struggle with how data is passed between view controllers. Having all
of the data in the root view controller and passing subsets of that data to the next UIViewController
(as you did in this chapter) is a clean and efficient way of performing this task.

237

Chapter 13 Stack Views

Bronze Challenge: More Stack Views

Quiz and WorldTrotter are good candidates for using stack views. Update both of these applications to
use UIStackView.

238

14

UINavigationController

In Chapter 5, you learned about UITabBarController and how it allows a user to access different
screens. A tab bar controller is great for screens that are independent of each other, but what if you
have screens that provide related information?

For example, the Settings application has multiple related screens of information: a list of settings (like
Sounds), a detailed page for each setting, and a selection page for each detail (Figure 14.1). This type
of interface is called a drill-down interface.

Figure 14.1 Drill-down interface in Settings

Settings I
< Settings Sounds ‘
® iee .
Notificatiof < Sounds Ringtone Store
Control G¢ Z*ATE Slow Rise < Ringtone
Vibrate on Rin| .
Do Not Dig Stargaze Marimba
Vibrate on Silg
Summit Motorcycle
Eg General | p\GER AND Al Twinkle Old Car Horn
LD Sound _
ounds < Uplift Old Phone
Wallpapery Change with § Waves Piano Riff
i The volume of th .
m Privacy adjusted using tf v/ Classic Pinball
SOUNDS AND VIBRATION PATTERNS | ¥ FRobot

Ringtone Robot

239

Chapter 14 UINavigationController

In this chapter, you will use a UINavigationController to add a drill-down interface to Homepwner
that lets the user see and edit the details of an Item. These details will be presented by the
DetailViewController that you created in Chapter 13 (Figure 14.2).

Figure 14.2 Homepwner with UINavigationController

Carrier 4:15 PM 3 Carrier & 4:15 PM (-
Edit Homepwner + (Homepwner Fluffy Mac
Shiny Bear $78 Name Fluffy Mac

Serial 178D1C4A
Fluffy Mac

16 Value 16.00

Shiny Bear $63
Fluffy Spork $80
Shiny Mac $73

Jul 17, 2015

240

UINavigationController

UINavigationController

A UINavigationController maintains an array of view controllers presenting related information in a
stack. When a UIViewController is on top of the stack, its view is visible.

When you initialize an instance of UINavigationController, you give it a UIViewController. This
UIViewController is added to the navigation controller’s viewControllers array and becomes the
navigation controller’s root view controller. The root view controller is always on the bottom of the

stack. (Note that while this view controller is referred to as the navigation controller’s “root view
controller,” UINavigationController does not have a rootViewController property.)

More view controllers can be pushed on top of the UINavigationController’s stack while the
application is running. These view controllers are added to the end of the viewControllers array that
corresponds to the top of the stack. UINavigationController’s topViewController property keeps a
reference to the view controller at the top of the stack.

When a view controller is pushed onto the stack, its view slides onscreen from the right. When the
stack is popped (i.e., the last item is removed), the top view controller is removed from the stack and its
view slides off to the right, exposing the view of the next view controller on the stack, which becomes
the top view controller. Figure 14.3 shows a navigation controller with two view controllers. The view
of the topViewController is what the user sees.

Figure 14.3 UINavigationController’s stack

UlINavigationController PR
navigationBar ‘(All Contacts Edit
I
viewControllers
v
rootViewController top ViewController
ListViewController DetailViewController

H

part brackoeard

. Blackbeard Realt
Emily Herman y

John Hightower

work %
Aaron Hillegass 565-2345
Aaron & Michele Hillegass FaceTime Oa g
Chickie Hillegass work

b@blackbeard.com
Kate & Dennis Finnegan Hillegass

Lou + Terry Hillegass

KS<CH0IO0DDVOZIrXec-—-IOTMMOUOW>

He's a pirate. No, really.

241

Chapter 14 UINavigationController

UINavigationController is a subclass of UIViewController, so it has a view of its own. Its view
always has two subviews: a UINavigationBar and the view of topViewController (Figure 14.4).

Figure 14.4 A UINavigationController's view

UINavigationController

navigationBar

topViewController \
/ Carrier & 3:14 PM - - UINavigationBar

DetailViewController < Homepwner Rusty Spork -

Name Rusty Spork

view Serial 8Q2U8
* Value 73
UlView
______ i Jul 3, 2013

In this chapter, you will add a UINavigationController to the Homepwner application and

make the ItemsViewController the UINavigationController’s root view controller. The
DetailViewController will be pushed onto the UINavigationController’s stack when an Item is
selected. This view controller will allow the user to view and edit the properties of an Item selected
from the table view of ItemsViewController. The object diagram for the updated Homepwner
application is shown in Figure 14.5.

242

UINavigationController

Figure 14.5 Homepwner object diagram

UlWindow UlView

. Name Rusty Spork
L subviews = || w v Sp R

Serial 8Q2U8
4

1

|

|

|

|

1

|

I

|

:

H b
! f Value, " 73
! .
1

|

I

|

1

|

1

1

1

|

view Jul 3, 2013 ‘
rootViewController UINavigationBar 3
!'_""___' I N S N
! Controllers : : ; :) '
l serialNumberField \ gateLabel ' nameField
I '. . .
! . UINavigationController view valueField :
| window . : : ;
|
|
|
|
! viewControllers
| T 1
i AppDelegate 0
1 N
| N . o
! DetailViewController
! ItemsViewController
|
|
i
A
1
i
' ItemStore =
' — »|8 > Item
i alitems |3, [T———»
! [
i Model

This application is getting fairly large, as you can see. Fortunately, view controllers and
UINavigationController know how to deal with this type of complicated object diagram. When
writing i0S applications, it is important to treat each UIViewController as its own little world. The
stuff that has already been implemented in Cocoa Touch will do the heavy lifting.

Begin by giving Homepwner a navigation controller. Reopen the Homepwner project. The only
requirements for using a UINavigationController are that you give it a root view controller and add
its view to the window.

Open Main.storyboard and select the Items View Controller. Then, from the Editor menu, choose
Embed In = Navigation Controller. This will set the ItemsViewController to be the root view
controller of a UINavigationController. It will also update the storyboard to set the Navigation
Controller as the initial view controller.

Your Detail View Controller interface may have misplaced views now that it is contained within a
navigation controller. If it does, select the stack view and click the Update Frames button in the Auto
Layout constraint menu.

243

Chapter 14 UINavigationController

Build and run the application and ... the application crashes. What is happening? You previously
created a contract with the AppDelegate that an instance of ItemsViewController would be the
rootViewController of the window:

let itemsController = window!.rootViewController as! ItemsViewController

You have now broken this contract by embedding the ItemsViewController in a
UINavigationController. You need to update the contract.

Open AppDelegate.swift and update application(_:didFinishLaunchingWithOptions:) to reflect
the new view controller hierarchy.

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey : Anyl?) —> Bool {
// Override point for customization after application launch.

// Create an ItemStore
let itemStore = ItemStore()

// Access the ItemsViewController and set its item store
tet—itemstontretter—=—windew ' —reetViewtontrotlter—asl TtemstHewControtler

let navController = window!.rootViewController as! UINavigationController

let itemsController = navController.topViewController as! ItemsViewController
itemsController.itemStore = itemStore

return true

}

Build and run the application again. Homepwner works again and has a very nice, if totally empty,
UINavigationBar at the top of the screen (Figure 14.6).

Figure 14.6 Homepwner with an empty navigation bar

Carrier 3:40 PM -
Edit Add

Fluffy Spork $11

Rusty Bear $5

Notice how the screen adjusted to fit ItemsViewController’s view as well as the new navigation bar.
UINavigationController did this for you: While the view of the ItemsViewController actually
underlaps the navigation bar, UINavigationController added padding to the top so that everything
fits nicely. This is because the top layout guide for the view controller is adjusted, along with any views
constrained to the top layout guide — like the stack view.

244

Navigating with UINavigationController

Navigating with UINavigationController

With the application still running, create a new item and select that row from the UITableView. Not
only are you taken to DetailViewController’s view, but you also get a free animation and a Back
button in the UINavigationBar. Tap this button to get back to ItemsViewController.

Notice that you did not have to change the show segue that you created in Chapter 13 to get this
behavior. As mentioned in that chapter, the show segue presents the destination view controller in a
way that makes sense given the surrounding context. When a show segue is triggered from a view
controller embedded within a navigation controller, the destination view controller is pushed onto the
navigation controller’s view controller stack.

Because the UINavigationController’s stack is an array, it will take ownership of any view controller
added to it. Thus, the DetailViewController is owned only by the UINavigationController after
the segue finishes. When the stack is popped, the DetailViewController is destroyed. The next time a
row is tapped, a new instance of DetailViewController is created.

Having a view controller push the next view controller is a common pattern. The root view controller
typically creates the next view controller, and the next view controller creates the one after that, and so
on. Some applications may have view controllers that can push different view controllers depending
on user input. For example, the Photos app pushes a video view controller or an image view controller
onto the navigation stack depending on what type of media is selected.

Notice that the detail view for an item contains the information for the selected Item. However, while
you can edit this data, the UITableView will not reflect those changes when you return to it. To fix this
problem, you need to implement code to update the properties of the Item being edited. In the next
section, you will see when to do this.

245

Chapter 14 UINavigationController

Appearing and Disappearing Views

Whenever a UINavigationController is about to swap views, it calls two methods:
viewWillDisappear(_:) and viewWillAppear(_:). The UIViewController that is about to be popped
off the stack has viewWillDisappear(_:) called. The UIViewController that will then be on top of
the stack has viewWillAppear(_:) called on it.

To hold on to changes in the data, when a DetailViewController is popped off the stack you will
set the properties of its item to the contents of the text fields. When implementing these methods for
views appearing and disappearing, it is important to call the superclass’s implementation — it might
have some work to do and needs to be given the chance to do it.

In DetailViewController.swift, implement viewWillDisappear(_:).

override func viewWillDisappear(_ animated: Bool) {
super.viewWillDisappear(animated)

// "Save" changes to item
item.name = nameField.text ?? "“
item.serialNumber = serialNumberField.text

if let valueText = valueField.text,
let value = numberFormatter.number(from: valueText) {
item.valueInDollars = value.intValue

} else {
item.valueInDollars = 0

}

}

Now the values of the Item will be updated when the user taps the Back button on the
UINavigationBar. When ItemsViewController appears back on the screen, the method
viewWillAppear(_:) is called. Take this opportunity to reload the UITableView so the user can
immediately see the changes.

In ItemsViewController.swift, override viewWillAppear(_:) to reload the table view.

override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(animated)

tableView. reloadData()
}

Build and run your application once again. Now you can move back and forth between the view
controllers that you created and change the data with ease.

246

Dismissing the Keyboard

Dismissing the Keyboard

Run the application, add and select an item, and touch the text field with the item’s name. When you
touch the text field, a keyboard appears onscreen (Figure 14.7), as you saw in your WorldTrotter app
in Chapter 4. (If you are using the simulator and the keyboard does not appear, remember that you can
press Command-K to toggle the device keyboard.)

Figure 14.7 Keyboard appears when a text field is touched

Carrier & 4:01PM (-

< Back

Name Shiny Mad
Serial 656BCABF

Value 41.00

The appearance of the keyboard in response to a touch is built in to the UITextField class as well as
UITextView, so you do not have to do anything extra for the keyboard to appear. However, at times you
will want to make sure the keyboard behaves as you want it to.

For example, notice that the keyboard covers more than a third of the screen. Right now, it does not
obscure anything, but soon you will add more details that extend to the bottom of the screen, and users
will want a way to hide the keyboard when it is not needed. In this section, you are going to give the
user two ways to dismiss the keyboard: pressing the keyboard’s Return key, and tapping anywhere else
on the detail view controller’s view. But first, let’s look at the combination of events that make text

editing possible.

247

Chapter 14 UINavigationController

Event handling basics

When you touch a view, an event is created. This event (known as a “touch event”) is tied to a specific
location in the view controller’s view. That location determines which view in the hierarchy the touch
event is delivered to.

For example, when you tap a UIButton within its bounds, it will receive the touch event and respond in
button-like fashion — by calling the action method on its target. It is perfectly reasonable to expect that
when a view in your application is touched, that view receives a touch event, and it may choose to react
to that event or ignore it. However, views in your application can also respond to events without being
touched. A good example of this is a shake. If you shake the device with your application running, one
of your views on the screen can respond. But which one? Another interesting case is responding to the
keyboard. DetailViewController’s view contains three UITextFields. Which one will receive the text
when the user types?

For both the shake and keyboard events, there is no event location within your view hierarchy to
determine which view will receive the event, so another mechanism must be used. This mechanism is
the first responder status. Many views and controls can be a first responder within your view hierarchy
— but only one at a time. Think of it as a flag that can be passed among views. Whichever view holds
the flag will receive the shake or keyboard event.

Instances of UITextField and UITextView have an uncommon response to touch events. When
touched, a text field or a text view becomes the first responder, which in turn triggers the system to put
the keyboard onscreen and send the keyboard events to the text field or view. The keyboard and the text
field or view have no direct connection, but they work together through the first responder status.

This is a neat way to ensure that the keyboard input is delivered to the correct text field. The concept
of a first responder is part of the broader topic of event handling in Cocoa Touch programming that
includes the UIResponder class and the responder chain. You will learn more about them when you
handle touch events in Chapter 18, and you can also visit Apple’s Event Handling Guide for iOS for
more information.

248

Dismissing by pressing the Return key

Dismissing by pressing the Return key

Now let’s get back to allowing users to dismiss the keyboard. If you touch another text field in the
application, that text field will become the first responder, and the keyboard will stay onscreen.
The keyboard will only give up and go away when no text field (or text view) is the first responder.
To dismiss the keyboard, then, you call resignFirstResponder() on the text field that is the first
responder.

To have the text field resign in response to the Return key being pressed, you are going to implement
the UITextFieldDelegate method textFieldShouldReturn(_:). This method is called whenever the
Return key is pressed.

First, in DetailViewController.swift, have DetailViewController conform to the
UITextFieldDelegate protocol.

class DetailViewController: UIViewController, UITextFieldDelegate {

Next, implement textFieldShouldReturn(_:) to call resignFirstResponder() on the text field that
is passed in.

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
textField.resignFirstResponder()
return true

}

Finally, open Main.storyboard and connect the delegate property of each text field to the Detail View
Controller (Figure 14.8). (Control-drag from each UITextField to the Detail View Controller and choose
delegate.)

Figure 14.8 Connecting the delegate property of a text field

Action Segue
Show]
Show Detail
Present Modally
Present As Popover

I Custom

Name | Qutlets
delegate
Serial Non-Adaptive Action Segue

Push (deprecated)
Modal (deprecated)

Value

Build and run the application. Tap a text field and then press the Return key on the keyboard. The
keyboard will disappear. To get the keyboard back, touch any text field.

249

Chapter 14 UINavigationController

Dismissing by tapping elsewhere

It would be stylish to also dismiss the keyboard if the user taps anywhere else on
DetailViewController’s view. To do this, you are going to use a gesture recognizer when
the view is tapped, just as you did in the WorldTrotter app. In the action method, you will call
resignFirstResponder() on the text field.

Open Main.storyboard and find Tap Gesture Recognizer in the object library. Drag this object onto
the background view for the Detail View Controller. You will see a reference to this gesture recognizer
in the scene dock.

In the project navigator, Option-click DetailViewController.swift to open it in the assistant
editor. Control-drag from the tap gesture recognizer in the storyboard to the implementation of
DetailViewController.

In the pop-up that appears, select Action from the Connection menu. Name the action
backgroundTapped. For the Type, choose UlTapGestureRecognizer (Figure 14.9).

Figure 14.9 Configuring a UITapGestureRecognizer action

Connection | Action
Object Detail View Controller
Name = backgroundTapped
Type UlTapGestureRecogni [4d)

Cancel Connect

Click Connect and the stub for the action method will appear in DetailViewController.swift.
Update the method to call endEditing(_:) on the view of DetailViewController.

@IBAction func backgroundTapped(_ sender: UITapGestureRecognizer) {
view.endEditing(true)
¥

Calling endEditing(_:) is a convenient way to dismiss the keyboard without having to know (or care)
which text field is the first responder. When the view gets this call, it checks to see if any text field in
its hierarchy is the first responder. If so, then resignFirstResponder () is called on that particular
view.

Build and run your application. Tap on a text field to show the keyboard. Tap on the view outside of a
text field and the keyboard will disappear.

250

Dismissing by tapping elsewhere

There is one final case where you need to dismiss the keyboard. When the user taps the Back button,
viewWillDisappear(_:) is called on the DetailViewController before it is popped off the stack,
and the keyboard disappears instantly, with no animation. To dismiss the keyboard more smoothly,
update the implementation of viewWillDisappear(_:) in DetailViewController.swift to call
endEditing(_:).

override func viewWillDisappear(_ animated: Bool) {
super.viewWillDisappear(animated)

// Clear first responder
view.endEditing(true)

// "Save" changes to item
item.name = nameField.text ?? ""
item.serialNumber = serialNumberField.text

if let valueText = valueField.text,
let value = numberFormatter.number(from: valueText) {
item.valueInDollars = value.integerValue

} else {
item.valueInDollars = 0@

}

251

Chapter 14 UINavigationController

UINavigationBar

In this section, you are going to give the UINavigationBar a descriptive title for the
UIViewController that is currently on top of the UINavigationController’s stack.

Every UIViewController has a navigationItem property of type UINavigationItem. However, unlike
UINavigationBar, UINavigationItem is not a subclass of UIView, so it cannot appear on the screen.
Instead, the navigation item supplies the navigation bar with the content it needs to draw. When a
UIViewController comes to the top of a UINavigationController’s stack, the UINavigationBar uses
the UIViewController’s navigationItem to configure itself, as shown in Figure 14.10.

Figure 14.10 UINavigationItem

UINavigationController UINavigationBar
— navigationBar —|

| i

1
topViewController configures itself from

1

|

v v
ItemsViewController UINavigationltem

——navigationltem —

By default, a UINavigationItem is empty. At the most basic level, a UINavigationItem has a
simple title string. When a UIViewController is moved to the top of the navigation stack and its
navigationItem has a valid string for its title property, the navigation bar will display that string
(Figure 14.11).

Figure 14.11 UINavigationItem with title

UINavigationController

navigationBar

Home Page

topViewController

UlViewController I UINavigationltem
navigationltem

title = "Home Page"

The title for the ItemsViewController will always remain the same, so you can set the title of its
navigation item within the storyboard itself.

Open Main.storyboard. Double-click on the center of the navigation bar above the Items View
Controller to edit its title. Give it a title of “Homepwner” (Figure 14.12).

Figure 14.12 Setting the title in a storyboard

Homepwner]

252

UINavigationBar

Build and run the application. Notice the string Homepwner on the navigation bar. Create and

tap on a row and notice that the navigation bar no longer has a title. It would be nice to have the
DetailViewController’s navigation item title be the name of the Itenm it is displaying. Because the
title will depend on the Item that is being displayed, you need to set the title of the navigationItem
dynamically in code.

In DetailViewController.swift, add a property observer to the item property that updates the title of
the navigationItem.

var item: Item! {
didSet {
navigationItem.title = item.name
}

}

Build and run the application. Create and tap a row and you will see that the title of the navigation bar
is the name of the Item you selected.

A navigation item can hold more than just a title string, as shown in Figure 14.13. There are three

customizable areas for each UINavigationItem: a leftBarButtonItem, a rightBarButtonItem, and a
titleView. The left and right bar button items are references to instances of UIBarButtonItem, which
contain the information for a button that can only be displayed on a UINavigationBar or a UIToolbar.

Figure 14.13 UINavigationItem with everything

UINavigationController

igationB:
navigationtar »> r> Search or enter an address m
I
topViewController
v
UlViewController UINavigationltem

navigationltem —————— |

leftBarButtonltem titleView rightBarButtonltem

e v Sa

image UlBarButtonltem UlTextField UlBarButtonltem
l ’ -

systemltem = .action

Recall that UINavigationItem is not a subclass of UIView. Instead, UINavigationItem encapsulates
information that UINavigationBar uses to configure itself. Similarly, UIBarButtonItem is not a view,
but holds the information about how a single button on the UINavigationBar should be displayed. (A
UIToolbar also uses instances of UIBarButtonItem to configure itself.)

The third customizable area of a UINavigationIten is its titleView. You can either use a basic string
as the title or have a subclass of UIView sit in the center of the navigation item. You cannot have both.
If it suits the context of a specific view controller to have a custom view (like a segmented control or
a text field, for example), you would set the titleView of the navigation item to that custom view.
Figure 14.13 shows an example from the built-in Maps application of a UINavigationItem with a
custom view as its titleView. Typically, however, a title string is sufficient.

253

Chapter 14 UINavigationController

Adding buttons to the navigation bar

In this section, you are going to replace the two buttons that are in the table’s header view with two bar
button items that will appear in the UINavigationBar when the ItemsViewController is on top of the
stack. A bar button item has a target-action pair that works like UIControl’s target-action mechanism:

When tapped, it sends the action message to the target.

First, let’s work on a bar button item for adding new items. This button will sit on the right side of the
navigation bar when the ItemsViewController is on top of the stack. When tapped, it will add a new
Item.

Before you update the storyboard, you need to change the method signature for addNewItem(_:).
Currently this method is triggered by a UIButton. Now that you are changing the sender to a
UIBarButtonItem, you need to update the signature.

In ItemsViewController.swift, update the method signature for addNewItem(_:).
@IBAction—func—addhNenktem—sender—UIButton)—f
@IBAction func addNewItem(_ sender: UIBarButtonItem) {

i

Now open Main.storyboard and then open the object library. Drag a Bar Button Item to the right side
of ltems View Controller’s navigation bar. Select this bar button item and open its attributes inspector.
Change the System Item to Add (Figure 14.14).

Figure 14.14 System bar button item

®@ U B ©
Bar Button ltem
Style Bordered

System Item Add

BEE

Tint Default

Bar Item
Title

Image

<>{

Tag 0
Enabled

Control-drag from this bar button item to the Iltems View Controller and select addNewltem:
(Figure 14.15).

254

Adding buttons to the navigation bar

Figure 14.15 Connecting the addNewltem: action

Action Segue
Show 1

Show Detail

Present Modally d
Present As Popover
Custom

Sent Actions Add
e addNewltem:
= toggleEditingMode:
Non-Adaptive Action Segue
Push (deprecated)
Modal (deprecated)

Label

Build and run the application. Tap the + button and a new row will appear in the table.

Now let’s replace the Edit button. View controllers expose a bar button item that will automatically
toggle their editing mode. There is no way to access this through Interface Builder, so you will need to
add this bar button item programmatically.

In ItemsViewController.swift, override the init(coder:) method to set the left bar button item.

required init?(coder aDecoder: NSCoder) {
super.init(coder: aDecoder)

navigationItem.leftBarButtonItem = editButtonItem

}

Build and run the application, add some items, and tap the Edit button. The UITableView enters editing
mode! The editButtonItem property creates a UIBarButtonItem with the title Edit. Even better,

this button comes with a target-action pair: It calls the method setEditing(_:animated:) on its
UIViewController when tapped.

Open Main.storyboard. Now that Homepwner has a fully functional navigation bar, you can get rid of
the header view and the associated code. Select the header view on the table view and press Delete.

Also, the UINavigationController will handle updating the insets for the table view. In
ItemsViewController.swift, delete the following code.

override func viewDidLoad() {
super.viewDidlLoad()

+—6et—the—height—ef—the—status—bar
1 BarHaial UTAnpLi on—st - BarE heiat
b Le\ien LIndi I .

tableView.rowHeight = UITableViewAutomaticDimension
tableView.estimatedRowHeight = 65

255

Chapter 14 UINavigationController

Finally, remove the toggleEditingMode(_:) method.

IBAets ¢ LeEditingModei— Jer UIB ¢
i sopdiss c
+—Ehange—text—ef—butten—te—informuser—ef—state

Editingtfolse . " i
+—Ehange—text—ef—butten—te—informuser—ef—state

Editingd i " }
3
3

Build and run again. The old Edit and Add buttons are gone, leaving you with a lovely
UINavigationBar (Figure 14.16).

Figure 14.16 Homepwner with navigation bar

Carrier & 4:10 PM -
Edit Homepwner +

Shiny Mac $21
Shiny Spork $0
Fluffy Mac $96

256

Bronze Challenge: Displaying a Number Pad

Bronze Challenge: Displaying a Number Pad

The keyboard for the UITextField that displays an Item’s valueInDollars is a QWERTY keyboard.
It would be better if it were a number pad. Change the Keyboard Type of that UITextField to the
Number Pad. (Hint: You can do this in the storyboard file using the attributes inspector.)

Silver Challenge: A Custom UlTextField

Make a subclass of UITextField and override the becomeFirstResponder () and
resignFirstResponder () methods (inherited from UIResponder) so that its border style changes when
it is the first responder. You can use the borderStyle property of UITextField to accomplish this. Use
your subclass for the text fields in DetailViewController.

Gold Challenge: Pushing More View Controllers

Currently, instances of Item cannot have their dateCreated property changed. Change Item so that
they can, and then add a button underneath the dateLabel in DetailViewController with the title
“Change Date.” When this button is tapped, push another view controller instance onto the navigation
stack. This view controller should have a UIDatePicker instance that modifies the dateCreated
property of the selected Item.

257

15

Camera

In this chapter, you are going to add photos to the Homepwner application. You will present a
UIImagePickerController so that the user can take and save a picture of each item. The image will
then be associated with an Item instance and viewable in the item’s detail view (Figure 15.1).

Figure 15.1 Homepwner with camera addition

00000 ATRT & 10:46 AM 7 % 79% W
<{ Homepwner Fluffy Spork
Name iPhone 7 Plus
Serial FTLKH1CK3FYK

Value 969.00

Oct 25, 2016

Images tend to be very large, so it is a good idea to store images separately from other data. Thus,

you are going to create a second store for images. ImageStore will fetch and cache images as they are
needed.

259

Chapter 15 Camera

Displaying Images and UlimageView

Your first step is to have the DetailViewController get and display an image. An easy way to display
an image is to put an instance of UIImageView on the screen.

Open Homepwner.xcodeproj and Main.storyboard. Then drag an instance of UIImageView onto the
view at the bottom of the stack view. Select the image view and open its size inspector. You want the
vertical content hugging and content compression resistance priorities for the image view to be lower
than those of the other views. Change the Vertical Content Hugging Priority to be 248 and the Vertical
Content Compression Resistance Priority to be 749. Your layout will look like Figure 15.2.

Figure 15.2 UIImageView on DetailViewController’s view

Detail View Controller

Name
Serial

Value

Date Created

A UIImageView displays an image according to the image view’s contentMode property. This
property determines where to position and how to resize the content within the image view’s frame.
UIImageView’s default value for contentMode is UIViewContentMode.scaleToFill, which adjusts
the image to exactly match the bounds of the image view. If you keep the default, an image taken by
the camera will be scaled to fit into the square UIImageView. To maintain the image’s aspect ratio, you
have to update contentMode.

260

Displaying Images and UlimageView

With the UIImageView selected, open the attributes inspector. Find the Content Mode attribute and
change it to Aspect Fit (Figure 15.3). You will not see a change on the storyboard, but now images will
be resized to fit within the bounds of the UIImageView.

Figure 15.3 Changing UIImageView's mode to Aspect Fit
® O B O

Image View
Image u
Highlighted]
State Highlighted
View
Content Mode Aspect Fit [$]
Semantic Unspecified [$]
Tag 0/C

Next, Option-click DetailViewController.swift in the project navigator to open it in the assistant
editor. Control-drag from the UIImageView to the top of DetailViewController.swift. Name the
outlet imageView and make sure the storage type is Strong. Click Connect (Figure 15.4).

Figure 15.4 Creating the imageView outlet

Connection | Outlet
Object Detail View Controller
Name imageView
Type UllmageView “

Storage | Strong

Cancel Connect

The top of DetailViewController.swift should now look like this:
class DetailViewController: UIViewController, UITextFieldDelegate {

@IBOutlet var nameField: UITextField!
@IBOutlet var serialNumberField: UITextField!
@IBOutlet var valueField: UITextField!
@IBOutlet var datelLabel: UILabel!

@IBOutlet var imageView: UIImageView!

261

Chapter 15 Camera

Adding a camera button

Now you need a button to initiate the photo-taking process. You will create an instance of UIToolbar
and place it at the bottom of DetailViewController’s view.

In Main.storyboard, press Command-Return to close the assistant editor and give yourself more room
to work in the storyboard. You are going to need to temporarily break your interface to add the toolbar
to the interface.

Select the bottom constraint for the stack view and press Delete to remove it. You need to make room
for the toolbar on the bottom. As of Xcode 8.1, it is difficult to resize the stack view. So instead, drag
the stack view up a bit (Figure 15.5). The view will be misplaced for now, but you will fix this shortly.

Figure 15.5 Moving the stack view out of the way

Date Created

262

Adding a camera button

Now drag a toolbar from the object library onto the bottom of the view. Select the toolbar and open the
Auto Layout Add New Constraints menu. Configure the constraints exactly as shown in Figure 15.6
and then click Add 5 Constraints. Because you chose the option to update frames, the stack view is
repositioned to its correct location.

Figure 15.6 Toolbar constraints

Add New Constraints

8 v
I
0 *|H[]Ho -
I
0 v

Spacing to nearest neighbor

Constrain to margins
Width 375 v
Height 44 -

@ Aspect Ratio

@ Leading Edges

Update Frames | Items of New Constraints

Add 5 Constraints
B3 & o tad

A UIToolbar works a lot like a UINavigationBar — you can add instances of UIBarButtonItem to it.
However, where a navigation bar has two slots for bar button items, a toolbar has an array of bar button
items. You can place as many bar button items in a toolbar as can fit on the screen.

263

Chapter 15 Camera

By default, a new instance of UIToolbar that is created in an interface file comes with one
UIBarButtonItem. Select this bar button item and open the attributes inspector. Change the System
Item to Camera, and the item will show a camera icon (Figure 15.7).

Figure 15.7 UIToolbar with camera bar button item

Detail View Controller

Name
Serial
Value
Date Created
® T 0 0
Bar Button Item
Style Bordered
A
System Item Camera
Tint = Default
Bar Item
Title
Image
Tag 0l
@ Enabled -— @&

Build and run the application and navigate to an item’s details to see the toolbar with its camera bar
button item. You have not connected the camera button to an action yet, so tapping on it will not do
anything.

The camera button needs a target and an action. With Main. storyboard still open, Option-click
DetailViewController.swift in the project navigator to reopen it in the assistant editor.

In Main.storyboard, select the camera button by first clicking on the toolbar and then the button itself.
Control-drag from the selected button to DetailViewController.swift.

264

Taking Pictures and UllmagePickerController

In the Connection pop-up menu, select Action as the connection type, name it takePicture, select
UlBarButtonltem as the type, and click Connect (Figure 15.8).

Figure 15.8 Creating an action

Connection | Action
Object Detail View Controller
Name | takePicture

Type UlBarButtonltem [V]

Cancel Connect

If you made any mistakes while making this connection, you will need to open Main.storyboard and
disconnect any bad connections. (Look for yellow warning signs in the connections inspector.)

Taking Pictures and UlimagePickerController

In the takePicture(_:) method, you will instantiate a ULImagePickerController and present it on
the screen. When creating an instance of UIImagePickerController, you must set its sourceType
property and assign it a delegate. Because there is set-up work needed for the image picker controller,
you need to create and present it programmatically instead of through the storyboard.

Setting the image picker’s sourceType

The sourceType constant tells the image picker where to get images. It has three possible values:
UIImagePickerControllerSourceType.camera Allows the user to take a new photo.

UIImagePickerControllerSourceType.photoLibrary Prompts the user to select an album
and then a photo from that album.

UIImagePickerControllerSourceType.savedPhotosAlbum Prompts the user to choose from the
most recently taken photos.

265

Chapter 15 Camera

Figure 15.9 Examples of the three sourceTypes

.camera .photoLibrary .savedPhotosAlbum
@000 Verizon T 4:34 PM 3} - ®e000 Verizon T 4:36 PM 3 -4

Photos Cancel Camera Roll Cancel

Y B Camera Roll
e o0

My Photo Stream
943

Panoramas
6

% Photo Library
. 23 from My Mac

ForPhone
23 from My Mac

PHOTO

Aaron Hillegass
3 from My Mac

The first source type, . camera, will not work on a device that does not have a camera. So before using
this type, you have to check for a camera by calling the method isSourceTypeAvailable(_:) on the
UIImagePickerController class:

class func isSourceTypeAvailable(_ type: UIImagePickerControllerSourceType) —-> Bool
Calling this method returns a Boolean value for whether the device supports the passed-in source type.

In DetailViewController.swift, find the stub for takePicture(_:). Add the following code to
create the image picker and set its sourceType.

@IBAction func takePicture(_ sender: UIBarButtonItem) {
let imagePicker = UIImagePickerController()
// If the device has a camera, take a picture; otherwise,

// just pick from photo library
if UIImagePickerController.isSourceTypeAvailable(.camera) {

imagePicker.sourceType = .camera
} else {
imagePicker.sourceType = .photoLibrary

}

266

Setting the image picker’s delegate

Setting the image picker’s delegate

In addition to a source type, the UIImagePickerController instance needs a delegate. When the user
selects an image from the UIImagePickerController’s interface, the delegate is sent the message
imagePickerController(_:didFinishPickingMediaWithInfo:). (If the user taps the cancel button,
then the delegate receives the message imagePickerControllerDidCancel(_:).)

The image picker’s delegate will be the instance of DetailViewController. At the top
of DetailViewController.swift, declare that DetailViewController conforms to the
UINavigationControllerDelegate and the UIImagePickerControllerDelegate protocols.

class DetailViewController: UIViewController, UITextFieldDelegate,
UINavigationControllerDelegate, UIImagePickerControllerDelegate {

Why UINavigationControllerDelegate? UIImagePickerController’s delegate property is actually
inherited from its superclass, UINavigationController, and while UIImagePickerController has its
own delegate protocol, its inherited delegate property is declared to reference an object that conforms
to UINavigationControllerDelegate.

In DetailViewController.swift, set the instance of DetailViewController to be the image picker’s
delegate in takePicture(_:).

@IBAction func takePicture(_ sender: UIBarButtonItem) {
let imagePicker = UIImagePickerController()
// If the device has a camera, take a picture; otherwise,

// just pick from photo library
if UIImagePickerController.isSourceTypeAvailable(.camera) {

imagePicker.sourceType = .camera
} else {
imagePicker.sourceType = .photoLibrary

}

imagePicker.delegate = self

Presenting the image picker modally

Once the UIImagePickerController has a source type and a delegate, you can display it by presenting
the view controller modally.

In DetailViewController.swift, add code to the end of takePicture(_:) to present the
UIImagePickerController.

imagePicker.delegate = self

// Place image picker on the screen
present(imagePicker, animated: true, completion: nil)

267

Chapter 15 Camera

Build and run the application. Select an Item to see its details and then tap the camera button on the
UIToolbar and ... the application crashes. Take a look at the description of the crash in the console.

Homepwner [3575:64615] [access] This app has crashed because it attempted to
access privacy-sensitive data without a usage description. The app's Info.plist
must contain an NSPhotoLibraryUsageDescription key with a string value explaining
to the user how the app uses this data.

When attempting to access private information, such as a user’s photos, i0OS presents a prompt to the
user asking them whether they want to allow access to the application. Contained within this prompt
is a description for why the application wants to access this information. Homepwner is missing this
description, and therefore the application is crashing.

Permissions

There are a number of capabilities on iOS that require user approval before use. Here are a subset of
those capabilities:

* Camera and photos
* Location

e Microphone

* HealthKit data

» Calendar

* Reminders

For each of these, your application must supply a usage description that specifies the reason that your
application wants to access this information. This description will be presented to the user whenever
the application accesses that capability.

268

Permissions

In the project navigator, select the project at the top. Make sure the Homepwner target is selected and
open the Info tab along the top (Figure 15.10).

Figure 15.10 Opening the project info

B2 QA © 2o 8 |58 B Homepwner
2 Homepwner] General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
> Homepwner
PROJECT . :
» HomepwnerTests . ¥V Custom iOS Target Properties
H
» HomepwnerUlTests &) Homepwner ” -
TARGETS
b e Bundle versions string, short 10
2erliomapaner Bundle identifier $(PRODUCT_BUNDLE_IDENTIFIEF
HomepwnerTests InfoDictionary version 60
HomepwnerUiTests Main storyboard file base name Main

Bundle version
LaunchScreen
$(EXECUTABLE_NAME)

an YES .
$(PRODUCT_NAME)

3 items)

Launch screen interface file base name
Executable file
Application requires iPhone environm...
Bundle name

» Supported interface orientations

Bundle creator OS Type code String 2222
Bundle OS Type code String APPL
Localization native development region String en B

M or v

» Required device

Hover over the last entry in this list of Custom iOS Target Properties and click the + button. Set the
Key of this new entry to be NSCameraUsageDescription and the Type to be a String.

Double-click on the Value for this new row and enter the string “This app uses the camera to associate
photos with items.” This is the string that will be presented to the user.

Now repeat the same steps above to add a usage description for the photo library. The Key will be
NSPhotoLibraryUsageDescription of type String and the Value will be “This app uses the Photos library
to associate photos with items.”

The Custom iOS Target Properties section will now look like Figure 15.11. (The entries in your list
may be in a different order.)

Figure 15.11 Adding in the new keys

V Custom iOS Target Properties
T
Bundle versions string, short 4 String 1.0
Bundle identifier 4 String $(PRODUCT_BUNDLE_IDENTIFIEF
InfoDictionary version 4 String 6.0
Main storyboard file base name 4 String Main
Bundle version 4 String 1
Launch screen interface file base name = String LaunchScreen
Executable file 4 String $(EXECUTABLE_NAME)
Application requires iPhone environm... 4 Boolean YES s
Bundle name 4 String $(PRODUCT_NAME)
» Supported interface orientations 4 Array (3 items)
Privacy - Photo Library Usage Descri... 4 String This app uses the Photos library
Bundle creator OS Type code 4 String ????
Privacy - Camera Usage Description 4 String This app uses the camera to assc
Bundle OS Type code = String APPL
Localization native development region 4 String en =
» Required device capabilities : Array (1 item)

269

Chapter 15 Camera

Build and run the application and navigate to an item. Tap the camera button and you will see the
permission dialog presented with the usage description that you provided (Figure 15.12 shows the
description for the library). After accepting, the UIImagePickerController’s interface will appear on
the screen (Figure 15.13 shows the camera interface), and you can take a picture or choose an existing
image if your device does not have a camera.

Figure 15.12 Photos library usage description

"Homepwner"” Would Like to
Access Your Photos

This app uses the Photos library to
associate photos with items.

Don’t Allow OK

(If you are working on the simulator, there are some default images already in the photo library. If
you would like to add your own, you can drag an image from your computer onto the simulator, and it
will be added to the simulator’s photo library. Alternatively, you can open Safari in the simulator and
navigate to a page with an image. Click and hold the image and choose Save Image to save it in the
simulator’s photo library.)

Figure 15.13 UIImagePickerController’s preview interface

270

Saving the image

Saving the image

Selecting an image dismisses the UIImagePickerController and returns you to

the detail view. However, you do not have a reference to the photo once the image

picker is dismissed. To fix this, you are going to implement the delegate method
imagePickerController(_:didFinishPickingMediaWithInfo:). This method is called on the image
picker’s delegate when a photo has been selected.

In DetailViewController.swift, implement this method to put the image into the UIImageView and
then call the method to dismiss the image picker.

func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String: Any]) {

// Get picked image from info dictionary
let image = info[UIImagePickerControllerOriginalImage] as! UIImage

// Put that image on the screen in the image view
imageView.image = image

// Take image picker off the screen -
// you must call this dismiss method
dismiss(animated: true, completion: nil)

}

Build and run the application again. Take (or select) a photo. The image picker is dismissed, and you
are returned to the DetailViewController’s view, where you will see the selected photo.

Homepwner’s users could have hundreds of items to catalog, and each one could have a large image
associated with it. Keeping hundreds of instances of Item in memory is not a big deal. Keeping
hundreds of images in memory would be bad: First, you will get a low memory warning. Then, if your
app’s memory footprint continues to grow, the OS will terminate it. The solution, which you are going
to implement in the next section, is to store images to disk and only fetch them into RAM when they
are needed. This fetching will be done by a new class, ImageStore. When the application receives a
low-memory notification, the ImageStore’s cache will be flushed to free the memory that the fetched
images were occupying.

271

Chapter 15 Camera

Creating ImageStore

In Chapter 16, you will have instances of Item write out their properties to a file, which will then be
read in when the application starts. However, because images tend to be very large, it is a good idea to
keep them separate from other data. You are going to store the pictures the user takes in an instance of
a class named ImageStore. The image store will fetch and cache the images as they are needed. It will
also be able to flush the cache if the device runs low on memory.

Create a new Swift file named ImageStore. In ImageStore.swift, define the ImageStore class and
add a property that is an instance of NSCache.

import UIKit
class ImageStore {

let cache = NSCache<NSString,UIImage>()
}

The cache works very much like a dictionary (which you saw in Chapter 2). You are able to

add, remove, and update values associated with a given key. Unlike a dictionary, the cache will
automatically remove objects if the system gets low on memory. While this could be a problem in this
chapter (because images will only exist within the cache), you will fix the problem in Chapter 16 when
you will also write the images to the filesystem.

Note that the cache is associating an instance of NSString with UIImage. NSString is Objective-C’s
version of String. Due to the way NSCache is implemented (it is an Objective-C class, like most of
Apple’s classes that you have been working with), it requires you to use NSString instead of String.

Now implement three methods for adding, retrieving, and deleting an image from the dictionary.
class ImageStore {

let cache = NSCache<NSString,UIImage>()

func setImage(_ image: UIImage, forKey key: String) {

cache.setObject(image, forKey: key as NSString)
}

func image(forKey key: String) -> UIImage? {
return cache.object(forKey: key as NSString)
}

func deleteImage(forKey key: String) {
cache.removeObject(forKey: key as NSString)
}

I

These three methods all take in a key of type String so that the rest of your codebase does not have
to think about the underlying implementation of NSCache. You then cast each String to an NSString
when passing it to the cache.

272

Giving View Controllers Access to the Image Store

Giving View Controllers Access to the Image Store

The DetailViewController needs an instance of ImageStore to fetch and store images. You will
inject this dependency into the DetailViewController’s designated initializer, just as you did for
ItemsViewController and ItemStore in Chapter 10.

In DetailViewController.swift, add a property for an ImageStore.

var item: Item! {
didSet {
navigationItem.title = item.name
}

b

var imageStore: ImageStore!
Now do the same in ItemsViewController.swift.

var itemStore: ItemStore!
var imageStore: ImageStore!

Next, still in ItemsViewController.swift, update prepare(for:sender:) to set the imageStore
property on DetailViewController

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
// If the triggered segue is the "showItem" segue"
switch segue.identifier {
case "showItem"?:
// Figure out which row was just tapped
if let row = tableView.indexPathForSelectedRow?.row {

// Get the item associated with this row and pass it along
let item = itemStore.allItems|[row]
let detailViewController
= segue.destination as! DetailViewController
detailViewController.item = item
detailViewController.imageStore = imageStore
¥
default:
preconditionFailure("Unexpected segue identifier.")
¥
b

Finally, update AppDelegate.swift to create and inject the ImageStore.

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Anyl?) —> Bool {
// Override point for customization after application launch.

// Create an ItemStore
let itemStore = ItemStore()

// Create an ImageStore
let imageStore = ImageStore()

// Access the ItemsViewController and set its item store and image store

let navController = window!.rootViewController as! UINavigationController

let itemsController = navController.topViewController as! ItemsViewController
itemsController.itemStore = itemStore

itemsController.imageStore = imageStore

273

Chapter 15 Camera

Creating and Using Keys

When an image is added to the store, it will be put into the cache under a unique key, and the
associated Item object will be given that key. When the DetailViewController wants an image from
the store, it will ask its item for the key and search the cache for the image.

Add a property to I'tem.swift to store the key.

let dateCreated: Date
let itemKey: String

The image keys need to be unique for your cache to work. While there are many ways to hack together
a unique string, you are going to use the Cocoa Touch mechanism for creating universally unique
identifiers (UUIDs), also known as globally unique identifiers (GUIDs). Objects of type NSUUID
represent a UUID and are generated using the time, a counter, and a hardware identifier, which is
usually the MAC address of the Wi-Fi card. When represented as a string, UUIDs look something like
this:

4A73B5D2-A6F4-4B40-9F82-EA1E34C1DC04

In Item.swift, generate a UUID and set it as the itemKey.

init(name: String, serialNumber: String?, valueInDollars: Int) {
self.name = name
self.valueInDollars = valueInDollars
self.serialNumber = serialNumber
self.dateCreated = Date()
self.itemKey = UUID().uuidString

super.init()

i

Then, in DetailViewController.swift, update
imagePickerController(_:didFinishPickingMediaWithInfo:) to store the image in the
ImageStore.

func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : Anyl) {

// Get picked image from info dictionary
let image = info[UIImagePickerControllerOriginalImage] as! UIImage

// Store the image in the ImageStore for the item's key
imageStore.setImage(image, forKey: item.itemKey)

// Put that image on the screen in the image view
imageView.image = image

// Take image picker off the screen -

// you must call this dismiss method
dismiss(animated: true, completion: nil)

274

Creating and Using Keys

Each time an image is captured, it will be added to the store. Both the ImageStore and the Item will
know the key for the image, so both will be able to access it as needed (Figure 15.14).

Figure 15.14 Accessing images from the cache

Item

name ="Red Sofa"
serialNumber ="NRRD492646"

ItemStore valuelnDollars = 120
0 _/ dateCreated = May 17, 2001

itemKey = "459723AB212"
allltems

[way]

Item

14 name = "Blue Bike"
serialNumber = "DRND844356"
valuelnDollars = 254
ImageStore dateCreated = May 23, 2009
itemKey = "032012BA298"

cache
Ulimage
[String : Ullmage]
032012BA298 «— | T _//V
Ulimage
/-— T .
"'459723AB212"

275

Chapter 15 Camera

Similarly, when an item is deleted, you need to delete its image from the image store. In
ItemsViewController.swift, update tableView(_:commit:forRowAt:) to remove the item’s image
from the image store.

override func tableView(_ tableView: UITableView,
commit editingStyle: UITableViewCellEditingStyle,
forRowAt indexPath: IndexPath) {
// If the table view is asking to commit a delete command...
if editingStyle == .delete {
let item = itemStore.allltems[indexPath. row]

let title = "Delete \(item.name)?"
let message = "Are you sure you want to delete this item?"

let ac = UIAlertController(title: title,
message: message,
preferredStyle: .actionSheet)

let cancelAction = UIAlertAction(title: "Cancel",
style: .cancel,
handler: nil)

ac.addAction(cancelAction)

let deleteAction = UIAlertAction(title: "Delete", style: .destructive,
handler: { (action) -> Void in
// Remove the item from the store
self.itemStore.removeItem(item)

// Remove the item's image from the image store
self.imageStore.deleteImage(forKey: item.itemKey)

// Also remove that row from the table view with an animation
self.tableView.deleteRows(at: [indexPath], with: .automatic)
1)

ac.addAction(deleteAction)

// Present the alert controller
present(ac, animated: true, completion: nil)

276

Wrapping Up ImageStore

Wrapping Up ImageStore

Now that the ImageStore can store images and instances of Item have a key to get an image
(Figure 15.14), you need to teach DetailViewController how to grab the image for the selected Item
and place it in its imageView.

The DetailViewController’s view will appear when the user taps a row in ItemsViewController and
when the UIImagePickerController is dismissed. In both of these situations, the imageView should
be populated with the image of the Item being displayed. Currently, it is only happening when the
UIImagePickerController is dismissed.

In DetailViewController.swift, make this happen in viewWillAppear(_:).

super.viewWillAppear(animated)

override func viewWillAppear(_ animated: Bool) {

nameField.text = item.name
serialNumberField.text = item.serialNumber
valueField.text =
numberFormatter.string(from: NSNumber(value: item.valueInDollars))
dateLabel.text = dateFormatter.string(from: item.dateCreated)

// Get the item key
let key = item.itemKey

// If there is an associated image with the item
// display it on the image view

let imageToDisplay = imageStore.image(forKey: key)
imageView.image = imageToDisplay

b

Build and run the application. Create an item and select it from the table view. Then, tap the camera
button and take a picture. The image will appear as it should. Pop out from the item’s details to the list
of items. Unlike before, if you tap and drill down to see the details of the item you added a picture to,
you will see the image.

277

Chapter 15 Camera

Bronze Challenge: Editing an Image

UIImagePickerController has a built-in interface for editing an image once it has been selected.
Allow the user to edit the image and use the edited image instead of the original image in
DetailViewController.

Silver Challenge: Removing an Image

Add a button that clears the image for an item.

Gold Challenge: Camera Overlay

UIImagePickerController has a cameraOverlayView property. Make it so that presenting the
UIImagePickerController shows a crosshair in the middle of the image capture area.

278

For the More Curious: Navigating Implementation Files

For the More Curious: Navigating Implementation
Files

Both of your view controllers have quite a few methods in their implementation files. To be an effective
i0S developer, you must be able to go to the code you are looking for quickly and easily. The source
editor jump bar in Xcode is one tool at your disposal (Figure 15.15).

Figure 15.15 Source editor jump bar

®=0 » /) W iPhone 65 (10.0) Homepwner | Build Succeeded | Today at 11:48 AM = |03 O

E = Q & @ = :EE _EJHomepwner Homepwner) 3 ItemsViewController.swift tableview(_:ceIIForRowAt:] |
Source editor jump bar

The jump bar shows you where exactly you are within the project (and also where the cursor is within
a given file). Figure 15.16 breaks down the jump bar details.

Figure 15.16 Jump bar details

88 14 QHomepwner Homepwner) = ItemsViewController.swift @]tabIeView(_:ceIIForRowAt:)
Project Group File Method

The breadcrumb trail navigation of the jump bar mirrors the project navigation hierarchy. If you click
on any of the sections, you will be presented with a popover of that section in the project hierarchy.
From there, you can easily navigate to other parts of the project.

Figure 15.17 shows the file popover for the Homepwner folder.

Figure 15.17 File popover

3 AppDelegate.swift
Main.storyboard | 2
3 |ImageStore.swift
3] Assets.xcassets
LaunchScreen.storyboard | 2

Info.plist

IltemsViewController.swift

Ba < B Homepwner Homepwner) : " " :cellForRowAt:)
3 Item.swi

: ltemStore.swift
s ItemCell.swift

s DetailViewController.swift

279

Chapter 15 Camera

Perhaps most useful is the ability to navigate easily within an implementation file. If you click on the
last element in the breadcrumb trail, you will get a popover with the contents of the file, including all
of the methods implemented within that file.

While the popover is visible, you can type to filter the items in the list. At any point, you can use the up
and down arrow keys and then press the Return key to jump to that method in the code. Figure 15.18
shows what you get when you search for “tableview” in I'temsViewController.swift.

Figure 15.18 File popover with “tableview” search

(®) tableview Q
@ UlTableViewDataSource methods
[tableview(_:moveRowAt:to:)
[tableview(_:commit:forRowAt:)
@] tableView(_:numberOfRowslInSection:)
[tableview(_:cellForRowAt:)

280

// MARK:

// MARK:

As your classes get longer, it can get more difficult to find a method buried in a long list of methods. A
good way to organize your methods is to use // MARK: comments.

Two useful // MARK: comments are the divider and the label:

// This is a divider
// MARK: -

// This is a label
// MARK: My Awesome Methods

The divider and label can be combined:

// MARK: - View life cycle
override func viewDidLoad() { ... }
override func viewWillAppear(_ animated: Bool) { ... }

// MARK: - Actions
func addNewItem(_ sender: UIBarButtonItem) {...}

Adding // MARK: comments to your code does not change the code itself; it just tells Xcode how to
visually organize your methods. You can see the results by opening the current file item in the jump
bar. Figure 15.19 presents a well-organized I'temsViewController.swift.

Figure 15.19 File popover with // MARK:s

ItemsViewController

itemStore
imageStore

@ Initializers
[inittcoder:)

@ View life cycle
@] viewDidLoad()
@ viewwillAppear(_:)

@ Actions
[0 addNewltem(_:)
@] prepare(for:sender:)

@ UlTableViewDataSource methods
[tableView(_:moveRowAt:to:)

@] tableView(_:commit:forRowAt:)

@] tableView(_:numberOfRowsInSection:)
@] tableView(_:cellForRowAt:)

If you make a habit of using // MARK: comments, you will force yourself to organize your code. If
done thoughtfully, this will make your code more readable and easier to work with.

281

16

Saving, Loading, and
Application States

There are many ways to save and load data in an iOS application. This chapter will take you through
some of the most common mechanisms as well as the concepts you need for writing to or reading from
the filesystem in i0S. Along the way, you will be updating Homepwner so that its data persists between
runs (Figure 16.1).

Figure 16.1 Homepwner in the task switcher

Homepwner

Edit Homepwner

Shiny Spork

Calendar

Fluffy Mac .
Reminders

Rusty Bear
Shiny Mac

Fluffy Bear

283

Chapter 16 Saving, Loading, and Application States

Archiving

Most iOS applications are, at base, doing the same thing: providing an interface for the user to
manipulate data. Every object in an application has a role in this process. Model objects are responsible
for holding on to the data that the user manipulates. View objects reflect that data, and controllers are
responsible for keeping the views and the model objects in sync. Therefore, saving and loading “data”
almost always means saving and loading model objects.

In Homepwner, the model objects that a user manipulates are instances of Item. For Homepwner to be
a useful application, instances of Item must persist between runs of the application. You will be using
archiving to save and load Item objects.

Archiving is one of the most common ways of persisting model objects in iOS. Archiving an object
involves recording all of its properties and saving them to the filesystem. Unarchiving re-creates the
object from that data.

Classes whose instances need to be archived and unarchived must conform to the NSCoding protocol
and implement its two required methods, encode (with:) and init(coder:).

protocol NSCoding {
func encode(with aCoder: NSCoder)
init?(coder aDecoder: NSCoder)

i

When objects are added to an interface file, such as a storyboard file, they are archived. At runtime,
the objects are loaded into memory by being unarchived from the interface file. UIView and
UIViewController both conform to the NSCoding protocol, so both can be archived and unarchived
without any extra effort from you.

Your Item class, on the other hand, does not currently conform to NSCoding. Open
Homepwner.xcodeproj and add this protocol declaration in Item.swift.

class Item: NSObject, NSCoding {

The next step is to implement the required methods. Let’s start with encode (with:). When an Item
is sent the message encode(with:), it will encode all of its properties into the NSCoder object that is
passed as an argument. While saving, you will use NSCoder to write out a stream of data. That stream
will be organized as key-value pairs and stored on the filesystem.

In Item.swift, implement encode(with:) to add the names and values of the item’s properties to the
stream.

func encode(with aCoder: NSCoder) {
aCoder.encode(name, forKey: '"name")
aCoder.encode(dateCreated, forKey: "dateCreated")
aCoder.encode(itemKey, forKey: "itemKey")
aCoder.encode(serialNumber, forKey: "serialNumber")

aCoder.encode(valueInDollars, forKey: "valueInDollars")

284

Archiving

To find out which encoding methods to use for other Swift types, you can check the documentation
for NSCoder. Regardless of the type of the encoded value, there is always a key, which is a string that
identifies which property is being encoded. By convention, this key is the name of the property being
encoded.

Encoding is a recursive process. When an instance is encoded (that is, when it is the first argument in
encode(_:forKey:)), that instance is sent encode(with:). During the execution of its encode (with:)
method, it encodes its properties using encode(_: forKey:) (Figure 16.2). Thus, each instance encodes
any properties that it references, which encode any properties that they reference, and so on.

Figure 16.2 Encoding an object

Date
_7|
encpde(With:) String
e -7 - =
encode(with:
ltem | - (with:)
"7 encode(with?) ==~ encode(with) String
. == BN
en~code(!vith 1)
Iy String
=N

285

Chapter 16 Saving, Loading, and Application States

The purpose of the key is to retrieve the encoded value when this Item is loaded from the filesystem
later. Objects being loaded from an archive are sent the message init(coder:). This method should
grab all of the objects that were encoded in encode(with:) and assign them to the appropriate

property.

In Item.swift, implement init(coder:).

required init(coder aDecoder: NSCoder) {
name = aDecoder.decodeObject(forKey: "name") as! String
dateCreated = aDecoder.decodeObject(forKey: "dateCreated") as! Date
itemKey = aDecoder.decodeObject(forKey: "itemKey") as! String
serialNumber = aDecoder.decodeObject(forKey: "serialNumber") as! String?

valueInDollars = aDecoder.decodeInteger(forKey: "valueInDollars")

super.init()

}

Notice that this method has an NSCoder argument, too. In init(coder:), the NSCoder is full of data to
be consumed by the Item being initialized. Also notice that you call decodeObject (forKey:) on the
container to get objects and decodeInteger(forKey:) to get the valueInDollars.

In Chapter 10, we talked about the initializer chain and designated initializers. The init(coder:)
method is not part of this design pattern. You will keep Item’s designated initializer the same, and
init(coder:) will not call it.

Instances of Item are now NSCoding compliant and can be saved to and loaded from the filesystem
using archiving. You can build the application now to make sure there are no syntax errors, but you do
not yet have a way to kick off the saving and loading. You also need a place on the filesystem to store
the saved items.

286

Application Sandbox

Application Sandbox

Every iOS application has its own application sandbox. An application sandbox is a directory on
the filesystem that is barricaded from the rest of the filesystem. Your application must stay in its
sandbox, and no other application can access its sandbox. Figure 16.3 shows the application sandbox

for iTunes/iCloud.

Figure 16.3 Application sandbox

> [Documents <—— Backup —»
9 Library | |
» [Caches J ‘
> [Preferences <¢—— Backup —» /

v

tmp

iTunes / iCloud

The application sandbox contains a number of directories:

Documents/

Library/Caches/

Library/Preferences/

tmp/

This directory is where you write data that the application generates
during runtime and that you want to persist between runs of the
application. It is backed up when the device is synchronized with
iTunes or iCloud. If something goes wrong with the device, files in this
directory can be restored from iTunes or iCloud. In Homepwner, the file
that holds the data for all your items will be stored here.

This directory is where you write data that the application generates
during runtime and that you want to persist between runs of the
application. However, unlike the Documents directory, it does not get
backed up when the device is synchronized with iTunes or iCloud. A
major reason for not backing up cached data is that the data can be very
large and extend the time it takes to synchronize your device. Data stored
somewhere else — like a web server — can be placed in this directory. If
the user needs to restore the device, this data can be downloaded from
the web server again. If the device is very low on disk space, the system
may delete the contents of this directory.

This directory is where any preferences are stored and where the Settings
application looks for application preferences. Library/Preferences is
handled automatically by the class NSUserDefaults and is backed up
when the device is synchronized with iTunes or iCloud.

This directory is where you write data that you will use temporarily
during an application’s runtime. The OS may purge files in this
directory when your application is not running. However, to be tidy you
should explicitly remove files from this directory when you no longer
need them. This directory does not get backed up when the device is
synchronized with iTunes or iCloud.

287

Chapter 16 Saving, Loading, and Application States

Constructing a file URL

The instances of Item from Homepwner will be saved to a single file in the Documents directory.
The ItemStore will handle writing to and reading from that file. To do this, the ItemStore needs to
construct a URL to this file.

Implement a new property in ItemStore.swift to store this URL.

var allltems = [Item]()
let itemArchiveURL: URL = {
let documentsDirectories =
FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)
let documentDirectory = documentsDirectories.first!
return documentDirectory.appendingPathComponent("items.archive")

30

Instead of assigning a value to the property directly, the value is being set using a closure. You may
recall that you did this with the numberFormatter property in Chapter 4. Notice that the closure here
has a signature of () —> URL, meaning it does not take in any arguments and it returns an instance

of URL. When the ItemStore class is instantiated, this closure will be run and the return value will be
assigned to the itemArchiveURL property. Using a closure like this allows you to set the value for a
variable or constant that requires multiple lines of code, which can be very useful when configuring
objects. This makes your code more maintainable because it keeps the property and the code needed to
generate the property together.

The method urls(for:in:) searches the filesystem for a URL that meets the criteria given

by the arguments. (Double-check that your first argument is .documentDirectory and not
.documentationDirectory. Autocomplete’s first suggestion is .documentationDirectory, so it is
easy to introduce this error and end up with the wrong URL.)

In i0S, the last argument is always the same. (This method is borrowed from macOS, where there are
significantly more options.) The first argument is a SearchPathDirectory enumeration that specifies
the directory in the sandbox you want the URL for. For example, searching for . cachesDirectory will
return the Caches directory in the application’s sandbox.

You can search the documentation for SearchPathDirectory to locate the other options. Remember
that these enumeration values are shared by i0S and macOS, so not all of them will work on iOS.

The return value of urls(for:in:) is an array of URLs. It is an array because in macOS there may be
multiple URLSs that meet the search criteria. In i0OS, however, there will only be one (if the directory
you searched for is an appropriate sandbox directory). Therefore, the name of the archive file is
appended to the first and only URL in the array. This will be where the archive of Item instances will
live.

288

NSKeyedArchiver and NSKeyedUnarchiver

NSKeyedArchiver and NSKeyedUnarchiver

You now have a place to save data on the filesystem and a model object that can be saved to the
filesystem. The final two questions are: How do you kick off the saving and loading processes, and
when do you do it? To save instances of Item, you will use the class NSKeyedArchiver when the
application “exits.”

In ItemStore.swift, implement a new method that calls archiveRootObject(_:toFile:) on the
NSKeyedArchiver class.

func saveChanges() -> Bool {

print("Saving items to: \(itemArchiveURL.path)")

return NSKeyedArchiver.archiveRootObject(allItems, toFile: itemArchiveURL.path)
}

The archiveRootObject(_:toFile:) method takes care of saving every single Itemin allItems to
the itemArchiveURL. Yes, it is that simple. Here is how archiveRootObject(_:toFile:) works:

» The method begins by creating an instance of NSKeyedArchiver. (NSKeyedArchiver is a concrete
subclass of the abstract class NSCoder.)

* The method encode(with:) is called on allItems and is passed the instance of NSKeyedArchiver
as an argument.

* The allItems array then calls encode(with:) to all of the objects it contains, passing the same
NSKeyedArchiver. Thus, all your instances of Item encode their instance variables into the very
same NSKeyedArchiver (Figure 16.4).

¢ The NSKeyedArchiver writes the data it collected to the path.

Figure 16.4 Archiving the allItems array

String
_-7 String
encodes - -~ "~]
_--"" __ _encodes 7| String
ttem Z:::::___a _______ s
valuelnDollars L__ encodes
g R Rttt Date
i g8 encodes ~~ T >
[ltem] L---
7 - encodes String
d IRRREN Item encodes __ ___s|
O e surywremsees N swrrreee— M
. NSKeyedArchi valuelnDollars - encodes String
encode(with:) eyedArchiver e
g Tl T - String
’ RN encodés™>
encodes ~~~ _
T Date

289

Chapter 16 Saving, Loading, and Application States

When the user presses the Home button on the device, the message
applicationDidEnterBackground(_:) is sent to the AppDelegate. That is when you want to send
saveChanges to the ItemStore.

Open AppDelegate.swift and add a property to the class to store the ItemStore instance. You will
need a property to reference the instance in applicationDidEnterBackground(_:).

class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?
let itemStore = ItemStore()

Then update application(_:didFinishLaunchingWithOptions:) to use this property instead of the
local constant.

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey : Anyl?) —> Bool {
// Override point for customization after application launch.

+—Ereate—an—TtemStore
Tet—itemStere—=—TtemStore)

// Create an ImageStore
let imageStore = ImageStore()

// Access the ItemsViewController and set its item store and image store

let navController = window!.rootViewController as! UINavigationController

let itemsController = navController.topViewController as! ItemsViewController
itemsController.itemStore = itemStore

itemsController.imageStore = imageStore

return true

}

Because the property and the local constant were named the same, you only needed to remove the code
that created the local constant.

Now, still in AppDelegate.swift, implement applicationDidEnterBackground(_:) to kick off
saving the Item instances. (This method may have already been implemented by the template. If so,
make sure to add this code to the existing method instead of writing a new one.)

func applicationDidEnterBackground(_ application: UIApplication) {
let success = itemStore.saveChanges()
if (success) {
print("Saved all of the Items")
} else {
print("Could not save any of the Items")

290

NSKeyedArchiver and NSKeyedUnarchiver

Build and run the application on the simulator. Create a few instances of Item, then press the Home
button to leave the application. Check the console and you should see a log statement indicating that
the items were saved.

While you cannot yet load these instances of Item back into the application, you can still verify that
something was saved.

In the console’s log statements, find one that logs out the itemArchiveURL location and another

that indicates whether saving was successful. If saving was not successful, confirm that your
itemArchiveURL is being created correctly. If the items were saved successfully, copy the path that is
printed to the console.

Open Finder and press Command-Shift-G. Paste the file path that you copied from the console

and press Return. You will be taken to the directory that contains the items.archive file. Press
Command-Up to navigate to the parent directory of items.archive. This is the application’s sandbox
directory. Here, you can see the Documents, Library, and tmp directories alongside the application
itself (Figure 16.5).

Figure 16.5 Homepwner’'s sandbox

Im 3EA885D7-F...13CEFB48D » [D items.archive
% 4AD4FA07-...90535503E48 » B Library >
™ 4F1B0475-A...9FBBF9B37 » I tmp >

>
>
"% 13F00182-D...9999E22DB3 »
[45EB751F-0...D4B61396C »

The location of the sandbox directory can change between runs of the application; however, the
contents of the sandbox will remain unchanged. Due to this, you may need to copy and paste the
directory into Finder frequently while working on an application.

291

Chapter 16 Saving, Loading, and Application States

Loading files

Now let’s turn to loading these files. To load instances of Item when the application launches, you will
use the class NSKeyedUnarchiver when the ItemStore is created.

In ItemStore.swift, override init() to add the following code.

init() {
if let archivedItems =
NSKeyedUnarchiver.unarchiveObject(withFile: itemArchiveURL.path) as? [Item] {
allItems = archivedItems

}

The unarchiveObject(withFile:) method will create an instance of NSKeyedUnarchiver and load the
archive located at the itemArchiveURL into that instance. The NSKeyedUnarchiver will then inspect the
type of the root object in the archive and create an instance of that type. In this case, the type will be

an array of Items because you created this archive with a root object of type [Item]. (If the root object
were an instance of Item instead, then unarchiveObject(withFile:) would return an Item.)

The newly created array is then sent init(coder:) and, as you may have guessed, the
NSKeyedUnarchiver is passed as the argument. The array starts decoding its contents (instances of
Item) from the NSKeyedUnarchiver and sends each of these objects the message init(coder:),
passing the same NSKeyedUnarchiver.

Build and run the application. Your items will be available until you explicitly delete them. One thing
to note about testing your saving and loading code: If you kill Homepwner from Xcode, the method
applicationDidEnterBackground(_:) will not get a chance to be called and the item array will not be
saved. You must press the Home button first and then kill it from Xcode by clicking the Stop button.

292

Application States and Transitions

Application States and Transitions

In Homepwner, the items are archived when the application enters the background state. It is useful to
understand the states an application can be in, what causes applications to transition between states,
and how your code can be notified of these transitions. This information is summarized in Figure 16.6.

Figure 16.6 States of a typical application

Not Running |« System runs

low on memory N
Application launches

application(_:willFinishLaunchingWithOptions:) L i i .
application(_:didFinishLaunchingWithOptions:) applicationWillTerminate(_:)
applicationDidBecomeActive(_:)

applicationWillEnterForeground(_:)

applicationDidBecomeActive(_:)
\
Application
Home button pressed or applicationDidBecomeActive(_:) icon tapped

incoming phone call

_— . . . Interruption
applicationWillResignActive(_:)

dismissed
Suspended
Inactive

applicationDidEnterBackground(_:)

il

Background After 10 seconds

@

When an application is not running, it is in the not running state and it does not execute any code or
have any memory reserved in RAM.

After the user launches an application, it enters the active state. When in the active state, an
application’s interface is on the screen, it is accepting events, and its code is handling those events.

While in the active state, an application can be temporarily interrupted by a system event like an SMS
message, push notification, phone call, or alarm. An overlay will appear on top of your application to
handle this event, and the application enters the inactive state. In the inactive state, an application is
visible behind the overlay and is executing code, but it is not receiving events. Applications typically
spend very little time in the inactive state. You can force an active application into the inactive state by
pressing the Lock button at the top of the device. The application will stay inactive until the device is
unlocked.

When the user presses the Home button or switches to another application in some other way, the
application enters the background state. (Actually, it spends a brief moment in the inactive state before
transitioning to the background state.) In the background state, an application’s interface is not visible
or receiving events, but it can still execute code. By default, an application that enters the background
state has about 10 seconds before it enters the suspended state. Your application should not rely on this
number; instead, it should save user data and release any shared resources as quickly as possible.

293

Chapter 16 Saving, Loading, and Application States

An application in the suspended state cannot execute code. You cannot see its interface, and any
resources it does not need while suspended are destroyed. A suspended application is essentially
flash-frozen and can be quickly thawed when the user relaunches it. Table 16.1 summarizes the
characteristics of the different application states.

Table 16.1 Application states

State Visible Receives Events |Executes Code
Not Running no no no

Active yes yes yes

Inactive mostly no yes
Background no no yes

Suspended no no no

You can see what applications are in the background or suspended by double-tapping the Home
button to get to the task switcher (Figure 16.7). You can do this in the simulator by pressing
Command-Shift-H twice. (Recently run applications that have been terminated may also appear in this
display.)

Figure 16.7 Background and suspended applications in the task switcher

. Homepwner

Edit Homepwner

Shiny Mac
Rusty Spork
Rusty Bear

" Rusty Mac

Shiny Bear

Shiny Spork

294

Writing to the Filesystem with Data

An application in the suspended state will remain in that state as long as there is adequate system
memory. When the OS decides memory is getting low, it will terminate suspended applications as
needed. A suspended application gets no indication that it is about to be terminated. It is simply
removed from memory. (An application may remain in the task switcher after it has been terminated,
but it will have to relaunch when tapped.)

When an application changes its state, a method is called on the application delegate. Here are some
of the methods from the UIApplicationDelegate protocol that announce application state transitions.
(These are also shown in Figure 16.6.)

optional func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey : Anyl?) —> Bool

optional func applicationDidBecomeActive(_ application: UIApplication)

optional func applicationWillResignActive(_ application: UIApplication)

optional func applicationDidEnterBackground(_ application: UIApplication)

optional func applicationWillEnterForeground(_ application: UIApplication)

You can implement these methods to take the appropriate actions for your application. Transitioning
to the background state is a good place to save any outstanding changes because it is the last time
your application can execute code before it enters the suspended state. Once in the suspended state, an
application can be terminated at the whim of the OS.

Writing to the Filesystem with Data

Your archiving in Homepwner saves and loads the itemKey for each Item, but what about the images?
At the moment, they are lost when the app enters the background state. In this section, you will extend
the image store to save images as they are added and fetch them as they are needed.

The images for Item instances should also be stored in the Documents directory. You can use the image
key generated when the user takes a picture to name the image in the filesystem.

Implement a new method in ImageStore.swift named imageURL (forKey:) to create a URL in the
documents directory using a given key.

func imageURL(forKey key: String) -> URL {

let documentsDirectories =
FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)
let documentDirectory = documentsDirectories.first!

return documentDirectory.appendingPathComponent (key)
}

To save and load an image, you are going to copy the JPEG representation of the image into a buffer
in memory. Instead of just creating a buffer, Swift programmers have a handy class to create, maintain,
and destroy these sorts of buffers — Data. A Data instance holds some number of bytes of binary data,
and you will use Data to store image data.

295

Chapter 16 Saving, Loading, and Application States

In ImageStore.swift, modify setImage(_:forKey:) to get a URL and save the image.

func setImage(_ image: UIImage, forKey key: String) {
cache.setObject(image, forKey: key as NSString)

// Create full URL for image
let url = imageURL(forKey: key)

// Turn image into JPEG data

if let data = UIImageJPEGRepresentation(image, 0.5) {
// Write it to full URL
let _ = try? data.write(to: url, options: [.atomic])

i

Let’s examine this code more closely. The function UIImageJPEGRepresentation takes two
parameters: a UIImage and a compression quality. The compression quality is a Float from O to 1,
where 1 is the highest quality (least compression). The function returns an instance of Data if the
compression succeeds and nil if it does not.

This Data instance can be written to the filesystem by calling write(to:options:). The bytes held

in the Data are then written to the URL specified by the first parameter. The second parameter allows
for some options to be passed into the method. If the .atomic option is present, the file is written to a
temporary place on the filesystem, and, once the writing operation is complete, that file is renamed to
the URL of the first parameter, replacing any previously existing file. Writing atomically prevents data
corruption should your application crash during the write procedure.

It is worth noting that this way of writing data to the filesystem is not archiving. While Data instances
can be archived, using the method write(to:options:) copies the bytes in the Data directly to the
filesystem.

Now that the image is stored in the filesystem, the ImageStore will need to load that image when it is
requested. The initializer init(contents0fFile:) of UIImage will read in an image from a file, given
a URL.

In ImageStore.swift, update the method image(forKey:) so that the ImageStore will load the image
from the filesystem if it does not already have it.

func image(forKey key: String) —> UIImage? {

if let existingImage = cache.object(forKey: key as NSString) {
return existingImage
}

let url = imageURL(forKey: key)

guard let imageFromDisk = UIImage(contentsOfFile: url.path) else {
return nil

}

cache.setObject(imageFromDisk, forKey: key as NSString)
return imageFromDisk

296

Writing to the Filesystem with Data

What is that guard statement? guard is a conditional statement, like an if statement. The compiler will
only continue past the guard statement if the condition within the guard is true. Here, the condition

is whether the UIImage initialization is successful. If the initialization fails, the else block is executed,
which allows you to have an early return. If the initialization succeeds, any variables or constants
bound in the guard statement (here, imageFromDisk) are usable after the guard statement.

The code above is functionally equivalent to the following code:

if let imageFromDisk = UIImage(contentsOfFile: url.path) {
cache.setObject(imageFromDisk, forKey: key)
return imageFromDisk

b

return nil

While you could do this, guard provides both a cleaner — and, more importantly, a safer — way to
ensure that you exit if you do not have what you need. Using guard also forces the failure case to be
directly tied to the condition being checked. This makes the code more readable and easier to reason
about.

You are able to save an image to disk and retrieve an image from disk, so the last thing you need to do
is add functionality to remove an image from disk.

In ImageStore.swift, make sure that when an image is deleted from the store, it is also deleted from
the filesystem. (You will see an error when you type in this code, which we will discuss next.)

func deleteImage(forKey key: String) {
cache.removeObject(forKey: key as NSString)

let url = imageURL(forKey: key)

FileManager.default.removeItem(at: url)

¥
Let’s take a look at the error message that this code generated, shown in Figure 16.8.

Figure 16.8 Error when removing the image from disk

func deleteImage(forKey key: String) {
cache.removeObject(forKey: key as NSString)

let url = imageURL(forKey: key)
FileManager.default.removeIltem(at: url) © Call can throw, but it is not marked with 'try' and the error is not handled

This error message is letting you know that the method removeItem(at:) can fail, but you are not
handling the error. Let’s fix this.

297

Chapter 16 Saving, Loading, and Application States

Error Handling

It is often useful to have a way of representing the possibility of failure when creating methods. You
have seen one way of representing failure throughout this book with the use of optionals. Optionals
provide a simple way to represent failure when you do not care about the reason for failure. Consider
the creation of an Int from a String.

II42II
Int(theMeaningOfLife)

let theMeaningOfLife
let numberFromString

This initializer on Int takes a String parameter and returns an optional Int (an Int?). This is because
the string may not be able to be represented as an Int. The code above will successfully create an Int,
but the following code will not:

let pi = "Apple Pie"
let numberFromString = Int(pi)

The string “Apple Pie” cannot be represented as an Int, so numberFromString will contain nil. An
optional works well for representing failure here because you do not care why it failed. You just want
to know whether it was successful.

When you need to know why something failed, an optional will not provide enough information. Think
about removing the image from the filesystem — why might that fail? Perhaps there is no file at the
specified URL, or the URL is malformed, or you do not have permission to remove that file. There are
a number of reasons this method could fail, and you might want to handle each case differently.

Swift provides a rich error handling system with compiler support to ensure that you recognize when
something bad could happen. You already saw this when the Swift compiler told you that you were not
handling a possible error when removing the file from disk.

If a method could generate an error, its method signature needs to indicate this using the throws
keyword. Here is the method definition for removeItem(at:):

func removeItem(at URL: URL) throws

The throws keyword indicates that this method could throw an error. (If you are familiar with throwing
exception in other languages, Swift’s error handling is not the same as throwing exception.) By using
this keyword, the compiler ensures that anyone who uses this method knows that this method can
throw an error — and, more importantly, that the caller also handles any potential errors. This is how the
compiler was able to let you know that you are not handling errors when attempting to remove a file
from disk.

To call a method that can throw, you use a do—catch statement. Within the do block, you annotate any
methods that might throw an error using the try keyword to reinforce the idea that the call might fail.

In ImageStore.swift, update deleteImage(forKey:) to call removeItem(at:) using a do-catch
statement.

298

Error Handling

func deleteImage(forKey key: String) {
cache.removeObject(forKey: key as NSString)

let url = imageURL(forKey: key)

do {

try FileManager.default.removeItem(at: url)
} catch {
}

b

If a method does throw an error, then the program immediately exits the do block; no further code in
the do block is executed. At that point, the error is passed to the catch block for it to be handled in
some way.

Now, update deleteImage(forKey:) to print out the error to the console.

func deleteImage(forKey key: String) {
cache.removeObject(forKey: key as NSString)

let url = imageURL(forKey: key)
do {
try FileManager.default.removeItem(at: url)
} catch {
print("Error removing the image from disk: \(error)")

b

Within the catch block, there is an implicit error constant that contains information describing the
error. You can optionally give this constant an explicit name.

Update deleteImage(forKey:) again to use an explicit name for the error being caught.

func deleteImage(forKey key: String) {
cache.removeObject(forKey: key as NSString)

let url = imageURL(forKey: key)
do {
try FileManager.default.removeItem(at: url)
} catch let deleteError {
print("Error removing the image from disk: \(errerdeleteError)")
}

b

There is a lot more that you can do with error handling, but this is the basic knowledge that you need
for now. We will cover more details as you progress through this book.

Build and run the application now that the ImageStore is complete. Take a photo for an item

and exit the application to the Home screen (on the simulator, select Hardware — Home or press
Shift-Command-H; on a hardware device simply press the Home button). Launch the application again.
Selecting that same item will show all its saved details — including the photo you just took.

Notice that the images are saved immediately after being taken, while the instances of Item are saved
only when the application enters the background. You save the images right away because they are just
too big to keep in memory for long.

299

Chapter 16 Saving, Loading, and Application States

Bronze Challenge: PNG

Instead of saving each image as a JPEG, save it as a PNG.

300

For the More Curious: Application State Transitions

For the More Curious: Application State Transitions

Let’s write some quick code to get a better understanding of the different application state transitions.

In AppDelegate.swift, implement the application state transition delegate methods so that they
print out the name of the method. You will need to add four more methods. (Check to make sure

the template has not already created these methods before writing brand new ones.) Rather than
hardcoding the name of the method in the call to print(), use the #function expression. At compile
time, the #function expression will evaluate to a String representing the name of the method.

func applicationWillResignActive(_ application: UIApplication) {
print(#function)

}

func applicationDidEnterBackground(
print(#function)
let success = itemStore.saveChanges()
if success {
print("Saved all of the Items")
} else {
print("Could not save any of the Items")
¥

application: UIApplication) {

b

func applicationWillEnterForeground(_ application: UIApplication) {
print(#function)

func applicationDidBecomeActive(_ application: UIApplication) {
print(#function)

}

func applicationWillTerminate(_ application: UIApplication) {
print(#function)

}

Finally, add the same print() statement to the top of
application(_:didFinishLaunchingWithOptions:).

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey : Any]?) —> Bool {
print(#function)

b

Build and run the application. You will see that the application gets sent
application(_:didFinishLaunchingWithOptions:) and then applicationDidBecomeActive(_:).
Play around to see what actions cause what transitions.

Press the Home button and the console will report that the application briefly inactivated and then went
into the background state. Relaunch the application by tapping its icon on the Home screen or in the
task switcher. The console will report that the application entered the foreground and then became
active.

Press the Home button to exit the application again. Then, double-press the Home button to open the
task switcher. Swipe the Homepwner application up and off this display to quit the application. Note
that no method is called on your application delegate at this point — it is simply terminated.

301

Chapter 16 Saving, Loading, and Application States

For the More Curious: Reading and Writing to the
Filesystem

In addition to archiving and Data’s binary read and write methods, there are a few more methods for
transferring data to and from the filesystem. One of them, Core Data, is coming up in Chapter 22. A
couple others are worth mentioning here.

Using Data works well for binary data. For text data, String has two instance methods:
write(to:atomically:encoding:) and init(contentsOf:encoding:). They are used as follows:

// Save someString to the filesystem
do {
try someString.write(to: someURL,
atomically: true,
encoding: .utf8)
} catch {
print("Error writing to URL: \(error)")
¥

// Load someString from the filesystem

do {
let myEssay = try String(contentsOf: someURL, encoding: .utf8)
print(myEssay)

} catch {
print("Error reading from URL: \(error)")

Note that in many languages, anything unexpected results in an exception being thrown. In Swift,
exceptions are nearly always used to indicate programmer error. When an exception is thrown, the
information about what went wrong is in an NSException object. That information is usually just a
hint to the programmer, like, “You tried to access the seventh object in this array, but there are only
two.” The symbols for the call stack (as it appeared when the exception was thrown) are also in the
NSException.

When do you use exceptions, and when do you use error handling? If you are writing a method that
should only be called with an odd number as an argument, throw an exception if it is called with an
even number — the caller is making an error and you want to help that programmer find the error. If
you are writing a method that wants to read the contents of a particular directory but does not have the
necessary privileges, use Swift’s error handling and throw an error to the caller to indicate why you
were unable to fulfill this very reasonable request.

Property list serializable types can also be written to the filesystem. The only types that are property
list serializable are String, NSNumber (including primitives like Int, Double, and Bool), Date,

Data, Array<Element>, and Dictionary<Key: Hashable,Value>. When an Array<Element> or
Dictionary<Key,Value> is written to the filesystem with these methods, an XML property list is
created. An XML property list is a collection of tagged values, like:

302

For the More Curious: Reading and Writing to the Filesystem

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
<dict>
<key>firstName</key>
<string>Christian</string>
<key>lastName</key>
<string>Keur</string>
</dict>
<dict>
<key>firstName</key>
<string>Aaron</string>
<key>lastName</key>
<string>Hillegass</string>
</dict>
</array>
</plist>

XML property lists are a convenient way to store data because they can be read on nearly any system.
Many web service applications use property lists as input and output. The code for writing and reading
a property list looks like this:

let authors = [
["firstName":"Christian", "lastName":"Keur"l],
["firstName":"Aaron", "lastName'":"Hillegass"]
1

// Write array to disk
if PropertyListSerialization.propertyList(authors,
isValidFor: .xml) {
do {
let data = try PropertyListSerialization.data(with: authors,
format: .xml,
options: [])
data.write(to: url, options: [.atomic])
} catch {
print("Error writing plist: \(error)")
}

b

// Read array from disk
do {
let data = try Data(contentsOf: url, options: [])
let authors = try NSPropertyListSerialization.propertyList(from: data,
options: [],
format: nil)
print("Read in authors: \(authors)")
} catch {
print("Error reading plist: \(error)")

303

Chapter 16 Saving, Loading, and Application States

For the More Curious: The Application Bundle

When you build an iOS application project in Xcode, you create an application bundle. The application
bundle contains the application executable and any resources you have bundled with your application.
Resources are things like storyboard files, images, and audio files — any files that will be used at
runtime. When you add a resource file to a project, Xcode is smart enough to realize that it should be
bundled with your application.

How can you tell which files are being bundled with your application? Select the Homepwner project
from the project navigator. Check out the Build Phases pane in the Homepwner target. Everything
under Copy Bundle Resources will be added to the application bundle when it is built.

Each item in the Homepwner target group is one of the phases that occurs when you build a project.
The Copy Bundle Resources phase is where all of the resources in your project get copied into the
application bundle.

You can check out what an application bundle looks like on the filesystem after you install an
application on the simulator. Print the application bundle path to the console and then navigate to that
directory.

print(Bundle.main.bundlePath)

Control-click the application bundle and choose Show Package Contents from the contextual menu
(Figure 16.9).

Figure 16.9 Viewing an application bundle

[BON J A46355FD-F711-482C-B2C8-AA17CF373D96
<[> g2 =i =y %Y O 3 Q
Favorites 992EA2CC-...BE627D4531 » |k MENE I
A46355FD-F...17CF373D96 » Open
Devices Show Package Contents
Shared Move to Trash
Tags Get Info

Compress “Homepwner”
Burn “Homepwner” to Disc...

Duplicate b
Make Alias

Quick Look “Homepwner”

Share >

Copy “Homepwner”

Show View Options

Tags... S5M
M

°® eeo0e0 i

Services >

304

For the More Curious: The Application Bundle

A Finder window will appear showing you the contents of the application bundle (Figure 16.10). When
users download your application from the App Store, these files are copied to their devices.

Figure 16.10 The application bundle

(XN) “, Homepwner
< 22 B m 1o 1 v $v Q
Favorites Name ~ Date Modified Size Kind
Devices > Base.lproj Today, 1:39 PM Folder
> Frameworks Today, 1:39 PM - Folder
Shared @ Homepwner Today, 1:39 PM 210 KB Unix E...le File
Tags Info.plist Today, 11:26 AM 1KB property list
Pkginfo Today, 11:26 AM 8 bytes TextEd...ument

You can load files from the application’s bundle at runtime. To get the full URL for files in the
application bundle, you need to get a reference to the application bundle and then ask it for the URL of
a resource.

// Get a reference to the application bundle
let applicationBundle = Bundle.main

// Ask for the URL to a resource named myImage.png in the bundle

if let url = applicationBundle.url(forResource: "myImage", ofType: "png") {
// Do something with URL

}

If you ask for the URL to a file that is not in the application’s bundle, this method will return nil. If
the file does exist, then the full URL is returned, and you can use this URL to load the file with the
appropriate class.

Bear in mind that files within the application bundle are read-only. You cannot modify them, nor can
you dynamically add files to the application bundle at runtime. Files in the application bundle are
typically things like button images, interface sound effects, or the initial state of a database you ship
with your application. You will use this method in later chapters to load these types of resources at
runtime.

305

17

Size Classes

Often, you want an application’s interface to have a different layout depending on the dimensions and
orientation of the screen. In this chapter, you will modify the interface for DetailViewController in
Homepwner so that when it appears on a screen that has a relatively small height, the set of text fields
and the image view are side by side instead of stacked on top of one another (Figure 17.1).

Figure 17.1 Two layouts for Homepwner’'s DetailViewController

(Homepwner iPhone 7 Plus
Name iPhone 7 Plus
Serial FTLKHICK3FYK

Value 969.00

Oct 25, 2016

000 ATET = 5:06 PM 7% 100% -

(Homepwner iPhone 7 Plus

Name iPhone 7 Plus
Serial FTLKH1CK3FYK

Value 969.00

Oct 25, 2016

The relative sizes of screens are defined in size classes. A size class represents a relative amount
of screen space in a given dimension. Each dimension (width and height) can either be compact or
regular, so there are four possible combinations of size classes:

Compact Width | Compact Height
Compact Width | Regular Height
Regular Width | Compact Height
Regular Width | Regular Height

iPhones with 3.5, 4, or 4.7-inch screens in landscape orientation
iPhones of all sizes in portrait orientation

iPhones with 5.5-inch screens in landscape orientation

iPads of all sizes in all orientations

Notice that the size classes cover both screen sizes and orientations. Instead of thinking about
interfaces in terms of orientation or device, it is better to think in terms of size classes.

307

Chapter 17 Size Classes

Modifying Traits for a Specific Size Class
When editing the interface for a specific size class combination, you are able to change:
» properties for many views
* whether a specific subview is installed
» whether a specific constraint is installed
* the constant of a constraint
* the font for subviews that display text

In Homepwner, you are going to focus on the first item in that list — adjusting view properties
depending on the size class configuration. The goal is to have the image view be on the right side of the
labels and text fields in a compact height environment. In a regular height environment, the image view
will be below the labels and text fields (as it currently is). Stack views will make this remarkably easy.

To begin, you are going to embed the existing vertical stack view within another stack view. This will
make it easy to add an image view to the right side of the labels and text fields.

Open Homepwner.xcodeproj and Main.storyboard. Select the vertical stack view and click the B3 icon
to embed this stack view within another stack view. With this new stack view selected, open the Auto
Layout Add New Constraints menu, configure it as shown in Figure 17.2, and add the constraints.

Figure 17.2 Stack view constraints

Add New Constraints

8 v
I
0 + H[]Hlo v
I
8 v

Spacing to nearest neighbor

Constrain to margins

Width 343 v
Height 543 .
a
@

@ Aspect Ratio

EB Leading Edges

Update Frames | Items of New Constraints

Add 4 Constraints
Bd & o] tal

Next, open the new stack view’s attributes inspector. Increase the Spacing to be 8.

Now you are going to move the image view from the inner stack view to the outer stack view that you
just created. This is how you will be able to have the image view on the right side of the rest of the

308

Modifying Traits for a Specific Size Class

interface: In a compact height environment, the stack view will be set to be horizontal and the image
view will take up the right side of the interface.

Moving the image view from one stack view to the other can be a little tricky, so you are going to do it
in a few steps.

Open the document outline and expand the section for the Detail View Controller Scene. Expand the
outer two stack views as shown in Figure 17.3.

Figure 17.3 Expanding the document outline

v Detail View Controller Scene

v Detail View Controller
| Top Layout Guide
_ | Bottom Layout Guide
v View
v Stack View
v Stack View
> Stack View
> Stack View
> Stack View
L Date Label
Image View
> Constraints
> Toolbar
> Constraints
i First Responder

Exit

Drag the Image View right above the stack view that it is currently contained within (Figure 17.4). This
will move it from the inner stack view to the outer stack view.

Figure 17.4 Moving the image view to the outer stack view

v Detail View Controller Scene

v Detail View Controller
| Top Layout Guide
_ Bottom Layout Guide
v View
v Stack View
v Stack View
> Stack View
> Stack View
> Stack View
L Date Label
> Constraints
> Toolbar
> Constraints
i) First Responder

Exit

309

Chapter 17 Size Classes

Finally, collapse the inner stack view and drag the Image View to be below it in the stack (Figure 17.5).
Make sure the Image View is indented at the same level as the inner stack view. You may need to
update frames at this point to get rid of any warnings.

Figure 17.5 Moving the image view below the inner stack view

v Detail View Controller Scene

v Detail View Controller
| Top Layout Guide
_ Bottom Layout Guide
v View
v Stack View
> Stack View
> Toolbar
> (&) Constraints
[} First Responder
=) Exit

Build and run the application. Confirm that the behavior of the stack view is unchanged.

At this point, you have updated everything that is common to all size classes. Next you will modify
specific size classes to change the layout of the content.

At the bottom of Interface Builder, click on the text View as: iPhone 7 (WC hR) to expand the view
options. Then select the landscape Orientation (Figure 17.6). Leave the Device as iPhone 7.

Figure 17.6 DetailViewController viewed as iPhone 7 landscape

Main.storyboard Main.storyboard (Base) EDelaHView Controller Scene Detail View Controller
O ®@ B B
-
Name
Serial
Value
Date Created
[View as: iPhone 7 (+C vC) — 100% + ==l S|
Vary for Traits
D D 0000 0o

310

Modifying Traits for a Specific Size Class

Next, you will update the properties for the outer stack view so that the image view is on the right side.

Select the outer stack view and open its attributes inspector. Under the Stack View heading, find the
Axis property and click the + button on its left side. From the pop-up menu, choose Any for the Width
variation and Compact for the Height variation (Figure 17.7). Click Add Variation. This will allow you
to customize the axis property for all iPhones in landscape.

Figure 17.7 Adding a size-class-specific option

Introduce Variation Based On:
Width | Any

Height | Compact

Gamut | Any

Add Variation

De @ ¢ E O

Stack View
Axis
Alignment
Distribution

Spacing

Vertical

Fill
Fill

Baseline Relative

0o

For the new option (hC), choose Horizontal (Figure 17.8). Now, whenever the interface has a compact
height, the outer stack view will have a horizontal configuration. When the interface has a regular

height, the outer stack view will have a vertical configuration.

Figure 17.8 Customizing the axis

Stack View

Axis

D e 3 ¥ E O

Vertical

C Horizontal

311

Chapter 17 Size Classes

The last change you want to make is for the inner stack view and the image view to fill the outer stack
view equally. To do this, you will customize the outer stack view’s distribution.

With the attributes inspector still open for the outer stack view, click on the + next to Distribution and
once again select Any for the Width variation and Compact for the Height variatio